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Abstract Algebra Toolbox

Howard Xiao

1 Groups

Tool 1: Group Operation Checking

Concepts used for this tool are:

Definition 1.1: Groups

A group is a set G with an operation ⋆ : G × G → G defined, denoted
(g, h) 7→ g ⋆ h for all g, h ∈ G; an identity for this operation (denoted e)
such that e ⋆ g = g ⋆ e = g for all g ∈ G and an operation inv : G → G
such that g 7→ g−1, where g ⋆ g−1 = g−1 ⋆ g = e.
The operation ⋆ must be associative, i.e. for all g, h, k ∈ G, g ⋆(h⋆k) =
(g ⋆ h) ⋆ k.

Definition 1.2: Abelian Groups

A group G is called abelian if the operation ⋆ defined for the group is
commutative, i.e. for all g, h ∈ G, g ⋆ h = h ⋆ g.

Some examples of this type of questions follow:

Exercise 1.1: Tool 1

1. Check whether ⋆ defined on Z×Z such that (a, b)⋆(c, d) = (ad+bc, bd)
is associative.
2. Check whether ⋆ defined on Q \ {0} such that a ⋆ b = a

b is associative.
3. Check whether ⋆ defined in 1. is commutative.
4. Check whether ⋆ defined on Q such that a ⋆ b = a+b

5 is commutative.
5. Prove that addition of residue classes of Z/nZ is associative and
commutative.
6. Prove that the law of composition defined on any set S by ab = a for
all a, b ∈ S is associative, but not commutative.

Further exercises can be found on Exercises of Dummit and Foote section
1.1, and Artin exercises for Chapter 2 Section 1.
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Tool 2: Group or Not a Group?

This tool follows from Tool 1 since verifying operation of the group candidate
is important. See definition 1.1 and 1.2 for concepts.

Exercise 1.2: Tool 2

1. Let G be a group with operation ⋆ and identity e. Prove that the set
S ⊂ G consisting of all invertible elements in G is a group.
2. Prove that for all n > 1, Z/nZ with multiplication operation is not a
group.
3. Determine what sets are a group under the addition operation:
(a) Set of rational numbers with absolute value less than 1.
(b) Set of rational numbers with denominators 1 or 2.
(c) Set of rational numbers in lowest terms whose denominator is odd.
4. Let G = {x ∈ R : 0 ≤ x < 1}, and for all x, y ∈ G we define
x ⋆ y = x+ y − ⌊x+ y⌋, where ⌊x+ y⌋ is the floor operator. Prove that
with ⋆, G is an abelian group.
5. Prove that A × B is an abelian group if and only if both A,B are
abelian groups.

Further exercises can be found on Exercises of Dummit and Foote section
1.1, and Artin exercises for Chapter 2 Section 2.

Tool 3: Order of Group Elements

The concepts for this tool are the following:

Definition 1.3: Order of a group element

Given a group G and element g ∈ G, the order of g, denoted |g|, is the
smallest natural number n ∈ N such that gn = e ∈ G. If such an n does
not exist, we say |g| = ∞.

Definition 1.4: Order of a group

Given a group G, the order of this group is the cardinality of G as a
set.

The two above definitions should not be confused. Examples of this tool’s
usage follow:
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Exercise 1.3: Using Order

1. Find the orders of each element in the multiplicative group Z/6Z\{0}.
2. Let x ∈ G for G be a group. Then, if x2 = e ∈ G, show that |x| is
either 1 of 2.
3. Given any group G and x ∈ G, show that x, x−1 have same order.
4. Suppose x ∈ G for some group G and |x| = n = st for some natural
numbers s, t ∈ N. Prove that |xs| = t.
5. Suppose x ∈ G for some group G, |x| = n < ∞, then show that
|G| > n.
6. Prove that for all a, b in group G, |ab| = |ba|.
7. Prove that elements (a, 1) and (1, b) commutes in group A × B, and
the order of (a, b) is the least common multiple of |a| and |b|.
8. Prove that given group G, some element x ∈ G. If |x| = ∞, show
that x, x2, . . . , xn, . . . for all n ∈ N is distinct.
9. Let G = {1, a, b, c} of order 4, show that if every element in G has
order less than or equal to 3, the operation defined for G is unique, and
under this operation, G is abelian.

Further exercises can be found on Exercises of Dummit and Foote section
1.1, and Artin exercises for Chapter 2 Section 2.

Tool 4: Arithmetic of Group Elements

This tool builds on Tool 3, and the following concepts:

Theorem 1.1: Properties of G

1. The identity e ∈ G is unique.
2. The inverse g−1 for each g ∈ G is unique.

3. g−1−1
= g for all g ∈ G.

Proof. The proof of this theorem is very straightforward, hence will be left
as an exercise (solution is provided in the solution file).

Theorem 1.2: Cancellation Laws

Given a group G, and g, x, y ∈ G, if gx = gy, then x = y. Similarly, if
xg = yg, x = y.

Proof. Proof is very simple, solution provided in solution file.
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Examples of using this tool follow:

Exercise 1.4: Tool 4

1. Prove that (a1 ⋆ · · · ⋆ an)−1 = a−1
n ⋆ · · · ⋆ a−1

1 , for a1, . . . , an ∈ G for
some group G.
2. Given a group G and given x, y ∈ G, prove that xy = yx if and only
if y−1xy = x, and if and only if x−1y−1xy = e.
3. Prove that given group G, if x2 = e for all x ∈ G, then G is abelian.
4. Given a group G and x, y, z ∈ G. If xyz = e, is yzx = e always true?
Is yxz = e always true? Come up with proofs/counter examples.

Further exercises can be found on Exercises of Dummit and Foote section
1.1, and Artin exercises for Section 2.

Tool 5: Dihedral Group Computation

Usage of this tool depends on the understanding of the concept of groups. Con-
cepts used for this tool are:

Definition 1.5: Symmetries

Given a regular n-gon, we define the set of symmetries the set of rotations
and reflections defined on this n-gon. Symmetries sometimes are also
called ”rigid motions”.

Definition 1.6: Elementary Rotation

Given a regular n-gon, labelling each of the vertices from 1 to n counter-
clockwise. We define the elementary rotation (denoted ρ) to be the
rotation that takes x 7→ x+ 1 for all x ∈ {1, . . . , n− 1} and n 7→ 1.

Theorem 1.3: Dihedral Group

The set of symmetries for any regular n-gon is a group under the oper-
ation of composition, called Dihedral group.

Proof. We need to observe a few things.
1. All rotations are of the form ρ, ρ2, . . . , ρn−1 plus the identity e = ρn,
which represents not permuting the vertices of the n-gon at all.
2. If n is even, the set of reflections are reflections with axis the line through
midpoints of two opposite sides (Type I) and reflections with axis a diagonal
(Type II); if n is odd, the set of reflections are reflections with axis the line
through a vertex and the midpoint of its opposite side.
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Now we are ready to prove the theorem. Firstly, rotation compose with
rotation will result in another rotation by 1. Let us consider rotation ρ
compose with some reflection s. If n is odd, label each point of the n-gon,
and suppose the reflection axis fixes point x, and through the midpoint of side
a, a+1. Then, we know (s◦ρ)(x−1) = s(x) = x, (s◦ρ)(x) = s(x+1) = x−1,
and (s ◦ ρ)(a) = s(a + 1) = a. In this case, s ◦ ρ is the reflection with axis
fixing a and through the midpoint of side x and x− 1.
If n is even, also label each point of the n-gon. Suppose s is Type I reflection
with axis through midpoint of a − 1, a and midpoint of b + 1, b. Then,
(s ◦ ρ)(a − 1) = s(a) = a − 1, (s ◦ ρ)(b) = s(b + 1) = b, hence s ◦ ρ is the
Type II reflection through diagonal joining a− 1 and b. Suppose s is a Type
II reflection with axis through diagonal joining a, b. Then, we know that
(s◦ρ)(a−1) = s(a) = a, (s◦ρ)(a) = s(a+1) = a−1, (s◦ρ)(b−1) = s(b) = b,
(s ◦ ρ)(b) = s(b + 1) = b − 1. In this case, s ◦ ρ is a Type I reflection with
axis through midpoints of sides a, a− 1 and b, b− 1.
Similar for ρ ◦ s in both cases, we now know that reflections compose with
rotations will result in reflections (and vice versa).
We will leave for exercise that the composition of two reflections is either
identity or a rotation. (See solution file for solution).

Theorem 1.4: D2n

The order of Dihedral Group for any regular n-gon is 2n, and this group
is denoted D2n.

Proof. From above proof, if n is odd, there are n rotations and n reflections,
resulting a total of 2n symmetries. If n is even, there are n rotations, n

2 Type
I reflections and n

2 Type II reflections, resulting a total of 2n symmetries.

Examples of using this tool follow:

Exercise 1.5: Dihedral Group

1. Let r be any rotation, and s be any reflection on a regular n-gon.
Prove that rs = sr−1.
2. Let r be any rotation on regular n-gon, s be any element in D2n that
is not a power of r. Show that rs = sr−1.
3. If n is odd and n ≥ 3, show that e is the only element that commutes
with all other elements in D2n.
4. Let x, y be elements of order 2 in any group G. Prove that if t = xy
then tx = xt−1, i.e. if |t| < ∞, x, t satisfy same relation as r, s ∈ D2n.
Similarly for y, t.

Further exercises can be found on Exercises of Dummit and Foote section 1.2.
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Tool 6: Rigid Motion Group Order for 3D Spaces

The concepts follow from the definition of rigid motion (Definition 1.5), and
the intuition that rigid motion is the movement that maintains the shape and
volume.
Some examples of this tool are below:

Exercise 1.6: Tool 6

1. Compute the order of the group of rigid motions of a cube.
2. Compute the order of the group of rigid motions of a tetrahedron.
3. Compute the order of the group of rigid motions of a octahedron.
4. Prove that the order of the group of rigid motions of a space with x
faces and y edges on each face is xy.

After proving 4. above, there is no need for any further exercises since you
have already mastered these problems with this result.

Tool 7: Computations on Cycles and Permutations

Concepts needed for this tool follow:

Definition 1.7: Symmetric Group Sn

Given a finite set X labelled that X = {1, 2, . . . , n}. We call the group
of bijections τ : X → X the symmetric group (permutation group).
The fact that this is a group can easily be shown since composition of
bijections is still a bijection, and bijection has inverse.

Theorem 1.5: Order of Sn

The order of Sn is n!

Proof. The proof here is left as an exercise (See solution file for solutions).

Definition 1.8: Cycles

We use cycle notation (a1a2 . . . an) to denote the permutation of a1 7→ a2,
a2 7→ a3, . . . an 7→ a1. We call this an n-cycle. A convention for this
notation is that a1 < a2 < . . . an. It can be observed that each cycle is
an element in Sn if considered all other elements in X that are not in
the cycle is mapped to themselves.
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Definition 1.9: Composition of Cycles

We write cycles (a1a2 . . . an)(b1b2 . . . bm) · · · to denote cycle composition.
This is equivalent to first apply the cycle from the right most position
and move to the left sequentially on the set X.

Theorem 1.6: Sn is non-abelian

Sn is a non-abelian group for all n ≥ 3.

Proof. It is very straightforward, as we observe that (12)(13) = (132) but
(13)(12) = (123).

Theorem 1.7: Disjoint Cycles Commute

If we have two cycles (a1a2 . . . an), (b1b2 . . . bm) such that
{a1, a2, . . . , an} ∩ {b1, b2, . . . , bm} = ∅, then (a1a2 . . . an)(b1b2 . . . bm) =
(b1b2 . . . bm)(a1a2 . . . an).

Proof. Since these permutations do not interfere with each other, it does not
matter what order they are applied to the set.

Examples of using this tool follow:

Exercise 1.7: Tool 7

1. List all elements of S3 in cycle notation, and compute their orders
(Refer to tool 3 for order computation, order computation is further
illustrated in Tool 8).
2. Compute (135)(123).
3. Find the order of (13456)(27)(389). Prove that the order of a cycle
written in disjoint cycle notations is the least common multiple of the
lengths of the cycles.
4. Given n,m ∈ N such that n ≥ m. Prove that the number of m cycles

in Sn is n(n−1)···(n−m+1)
m .

5. Show that if n ≥ 4, then the number of permutation who can be

written as the multiplication of two disjoint 2-cycles is n(n−1)(n−2)(n−3)
8 .

Further exercises can be found on Dummit and Foote Exercise 1.3.

Tool 8: Order of Cycles

The concepts for this tool is already explained in Tool 3 and Tool 7. The main
goal is to familiarize the type of questions.
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Exercise 1.8: Tool 8

1. Write out the cycle decomposition for every element of order 4 in S4.
2. Prove that given an m-cycle σ = (a1 . . . am), then for all i ∈
{1, 2, . . .m}, σi : ax 7→ a(x+i mod m).
3. Show that an element of order 2 must have a cycle decomposition of
commuting 2-cycles.
4. Let p < n be any prime. Show that an element in Sn of order p must
have a cycle decomposition of commuting p-cycles. Give counterexam-
ples to this claim when p is not a prime.
5. If τ = (12)(34)(56)(78), determine whether there exists an n-cycle
(n ≥ 8) σ such that σk = τ for some k ∈ N.
6. Repeat 5. for τ = (12)(345) and n ≥ 5.

Further exercises can be found on Dummit and Foote Exercise 1.3.

Tool 9: Usage of Various Examples of Groups

The concepts are mainly about what are some examples of groups, which are
summarized below:
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Example 1.1: Examples of Groups

1. Z (Q,R with addition). This is very easy to verify, as we have assumed
associative laws and additive inverses on Z, Q,R and the identity is 0.
2. Z/nZ is a group under addition. (shown in Tool 1)
3. Sn is an example of a group.
4. The group of rigid motions on regular n-gon is another example.
5. Any field is a group by definition.
6. We denote GL(n,F) to be all invertible n × n matrices with entries
in F. This is a group under matrix multiplication, since multiplication
of two invertible matrices gives another invertible matrix, and identity
matrix is invertible and is the identity for this group.
7. Similarly, we denote SL(n,F) to be all n×nmatrices with determinant
1 and entries in F. This is also a group under matrix multiplication,
since multiplication of two det 1 matrices gives another det 1 matrix,
and identity matrix is det 1 and is the identity for this group.
8. We also denote O(n,F) to be all orthogonal n × n matrices, i.e. all
n× n matrices A (with entries in F) such that ATA = I.
9. We call the group established in Exercise 1.3.9 the ”Klein-4” group.
10. We have another example, called the ”Quarternion Group”, denoted
H or Q8, which is the set of elements {±1,±i,±j,±k} such that 12 =
(−1)2 = 1, i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, and
ik = j = −ki.

Examples of using this tool follow:

Exercise 1.9: Tool 9

1. Write out each element of GL2(F2), and show that this group is non-
abelian. (F2 is a field with only 2 elements 0, 1.)
2. Show that GL(n, F ) is finite if and only if F is finite.
3. Let G be the set of all 2 × 2 upper triangular matrices in R. Prove
that G is a group.
4. Compute the order of each element in Q8.

Further exercises can be found on Dummit and Foote Exercises 1.4 and 1.5.

Tool 10: Group Homomorphisms and their Properties

Concepts needed for this tool are the following, plus understanding of previous
tools, especially Tool 4 and Tool 9:
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Definition 1.10: Group Homomorphism

Given two groups G,H, a (group) homomorphism is a map ϕ : G → H
such that for all g, g′ ∈ G, we have ϕ(gg′) = ϕ(g)ϕ(g′).

Definition 1.11: G

ven a homomorphism ϕ : G → H, we define the ”kernel” of ϕ to be
{g ∈ G : ϕ(g) = eH},

Theorem 1.8: Properties of Homomorphism

If we have ϕ : G→ H is a homomorphism between two groups, then we
know that:
1. ϕ(eG) = eH , where eG, eH represents the identities for G and H
respectively.
2. ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

Proof. Proof of this theorem is straight-forward, hence only included in so-
lution file.

Examples of using this tool follow:

Exercise 1.10: Tool 10

1. Show that the ”conjugate” map ϕ : G→ G such that ϕ(g) = g0gg0
−1

for some specific g0 ∈ G for all g ∈ G, is a homomorphism.
2. Show that the inverse map ϕ : G→ G such that g 7→ g−1 for all g ∈ G
is a group homomorphism if and only if G is abelian.
3. Show that for any homomorphism ϕ : G → H, any g ∈ G, ϕ(gn) =
(ϕ(g))n for all n ∈ N.
4. Define π : Rn → R to be the projection onto first coordinate, i.e.
(x1, . . . , xn) 7→ x1. Prove that this is a group homomorphism.
5. Prove that if ϕ : G → G′ is a homomorphism and surjective, then if
G is abelian then G′ is abelian.
6. Define f : R → C \ 0, where R is treated as an additive group, and
C \ {0} is treated as a multiplicative group. f(x) = eix. Prove that in
this case f is a homomorphism.
7. Consider ϕ : S → R \ {0} where S is the set of all 2 × 2 upper

triangular matrices of R. Define

(
a b
0 c

)
7→ a2. Prove that ϕ is a group

homomorphism if R \ {0} is considered as a multiplicative group.
8. Prove that the image of a homomorphism is a group.

Further exercises can be found on Dummit and Foote Exercise 1.6 and Artin
Exercise 2.5.
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Tool 11: Group Isomorphisms and their Properties

Concepts used for this tool are the following:

Definition 1.12: Isomorphisms

A map ϕ : G → H is an isomorphism if ϕ is a bijective homomorphism.
If there exists such a ϕ, we call G and H ”isomorphic” to each other,
denoted G ∼= H.

Theorem 1.9: Properties of Isomorphisms

Given ϕ : G→ H an isomorphism, we have:
1. |G| = |H|
2. G is abelian if and only if H is abelian.
3. For all x ∈ G, |x| = |ϕ(x)|.

Proof. 1. Suppose |G| is finite, then |H| = |G| must also be finite given by
the definition of bijectivity. If |G| is infinite, then |H| must also be infinite,
hence |G| = |H|.
2. We prove two directions: if G is abelian, for all x, y ∈ H, we know that
x = ϕ(a), y = ϕ(b) for some a, b ∈ G, and we know that xy = ϕ(a)ϕ(b) =
ϕ(ab) = ϕ(ba) = ϕ(b)ϕ(a) = yx, hence H is abelian. The other direction
follows exactly the same way by swapping G and H above.
3. Suppose |x| = n, i.e., xn = e, then we know that ϕ(xn) = ϕ(e) =
e = (ϕ(x))n by previous exercises on homomorphisms, thus, we know that
|ϕ(x)| ≤ n. We also know that if (ϕ(x))m = e, then ϕ(xm) = e, since ϕ is a
bijection, xm = e ∈ G, thus |x| ≤ |ϕ(x)| ≤ n, hence |ϕ(x)| = |x| = n.

Examples of using this tool follow:
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Exercise 1.11: Tool 11

1. Prove that the multiplicative groups R \ {0} and C \ {0} are not
isomorphic.
2. Prove that the additive groups of R and Q are not isomorphic.
3. Prove that D8 and Q8 are not isomorphic.
4. For groups A,B, prove that A×B ∼= B ×A.
5. Prove that ϕ is an isomorphism if and only if ϕ is a surjective
homomorphism with kernel e.
6. Show that if ϕ is an isomorphism, ϕ−1 is also an isomorphism.
7. Describe all homomorphisms from Z+ → Z+, and indicate which are
injective, surjective or bijective(isomorphism).

Further exercises can be found on Dummit and Foote Exercise 1.6 and Artin
Exercise 2.6.

Tool 12: Automorphisms and their Properties

Concepts of this tool follow closely from Tool 10 and Tool 11, with new concepts
follow:

Definition 1.13: Automorphisms

If G is a group, isomorphisms from G to itself are called automorphisms.

Example 1.2: Examples of Automorphisms

1. If G = Z+, we have found in previous exercises that ϕ = id and
ϕ′(n) = −n are two automorphisms on G.
2. If G is abelian, we know that ϕ : g 7→ g−1 is homomorphism. Besides,
for all g ∈ G, we know that ϕ−1(g) = g−1, thus we know that ϕ is bijec-
tive, hence an automorphism.
3. Fix a g0 ∈ G, we know that the map Cg0 : g 7→ g0gg0

−1 is a homo-
morphism. Given g ∈ G, we know that Cg0

−1(g) = g−1
0 gg0, hence Cg0 is

also an automorphism.

Definition 1.14: Inner and Outer Automorphisms

e call the automorphisms that has form Cg0 for some g0 ∈ G the inner
automorphisms. We say that the automorphisms that are not inner
are outer automorphisms. The set of inner automorphisms are denoted
inn(G).
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Theorem 1.10: inn(G)

inn(G) is a group. If G is abelian, inn(G) = {id}.

Proof. The proof of this theorem is very direct from definition, hence is left
as an exercise (see solution file for solutions).

Theorem 1.11

Consider the map ϕ : G → Aut(G) that g 7→ Cg, this map is a homo-
morphism, with image inn(G).

Proof. Firstly, Consider the map Cgg′ , Cgg′(x) = gg′x(gg′)
−1

=

g(g′xg′
−1

)g−1 = Cg(x) ◦ Cg′(x). Thus, we know that ϕ(gg′) = Cgg′ =
Cg ◦ Cg′ = ϕ(g) ◦ ϕ(g′), hence ϕ is a homomorphism. The image is inn(G)
by definition.

Examples of using this tool follow:

Exercise 1.12: Tool 12

1. Prove that the map A 7→ (AT )−1 is an automorphism of GL(n,R).
2. Prove that the set of automorphisms is a group.
3. Prove that for any fixed k ∈ Q+, the map q 7→ kq for all q ∈ Q is an
outer automorphism on Q for k ̸= 1.

Further exercises can be found on Dummit and Foote Exercise 1.6 and Artin
Exercise 2.6.

Tool 13: Group Action: Does this act?

Concepts of this tool are provided below.

Definition 1.15: Group Action

An action of a group G on a set A is a map G × A → A such that
(g, a) 7→ g · a ∈ A, where (gh)a = g(ha) for all g, h ∈ G, a ∈ A and
ea = a for all a ∈ A.
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Example 1.3: G Acting on itself

1. Consider the action (g, x) 7→ gx for all g ∈ G, x ∈ G, this is an action
of G on itself. The proof is simple, hence left as exercise (see solution
file). We call this action the ”left translation” or ”left regular action” of
G.
2. Consider the map (g, x) 7→ xg, this is not an action. The map
(g, x) 7→ xg−1 is an action. Both of this can be shown easily, hence
left as exercise (see solution file). We call the second action the ”right
translation” or ”right regular action” of G.
3. The map (g, x) 7→ gxg−1 is an action of G on itself, since

(gh)x = (gh)x(gh)
−1

= g(hxh−1)g−1 = g(hx) for all x, g, h ∈ G and
ex = exe−1 = x for all x ∈ G. This action is called conjugation.

Theorem 1.12: Permutation Representation of Actions

Suppose group G acts on a finite set A. Fix a g and consider the map
σg : a 7→ ga for all a ∈ A, then this is a permutation on A. Furthermore,
the map from G to SA: g 7→ σg is a homomorphism. In fact, if we have
a homomorphism ϕ : G → SA, we can define ga = ϕ(g)(a), and in this
case G acts on A. The homomorphism between G and SA is called the
permutation representation associated with the action on A.

Proof. Firstly, consider σg−1 , then we know that σg−1(a) = g−1a, hence
σg ◦ σg−1 = id, therefore, σg has an inverse, which means that it is bijective.
Besides, we know that σg : A → A, hence it is a permutation on A. Also,
given g, g′ ∈ G, we have that (σg′ ◦ σg)(a) = g′ga = σg′g(a), hence we know
that the map from G to SA: g 7→ σg is a homomorphism.
Next, given the homomorphism ϕ : G → SA, we know that (gh)a =
ϕ(gh)(a) = ϕ(g)ϕ(h)(a) = ϕ(g)(ha) = g(ha) for all g, h ∈ G, a ∈ A. Be-
sides, ea = ϕ(e)(a) = id(a) = a, hence in this case ga = ϕ(g)(a) is an action
of G on A.

Examples of using this tool follow:

Exercise 1.13: Tool 13

1. Given a vector space V over a field F , prove that F acts on V by
scalar multiplication.
2. Show that Z+ acts on itself by z · a = z + a.
3. Prove that the kernel of the action of group G on set A set of a ∈ A
such that there exists g ∈ G where ga = a is the same as the kernel of
the corresponding permutation representation.
4. Show that the group of rigid motions of a tetrahedron is isomorphic
to a group inside of S4.
5. Show that group multiplication is a self-action of any group G.
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Further exercises can be found on Dummit and Foote Exercise 1.7.

Tool 14: Orbits, Stablizer and Centralizer

Concepts of this tool closely follow from Tool 13, with new concepts follow:

Definition 1.16: Orbit

If a group G acts on a set A, for each a ∈ A, the orbit of a is {ga : g ∈ G},
denoted G · a.

Definition 1.17: Stablizer

If a group G acts on a set A, for each a ∈ A, the stablizer of a is
{g ∈ G : ga = a}, denoted StabG(a).

Definition 1.18: Centralizer and Center

If a group G acts on a set A ⊂ G, the centralizer of A is CG(A) = {g ∈
G : ga = ag∀a ∈ A}. The self-action group multiplication’s centralizer
is called the center of the group, i.e. CG(G), denoted Z(G).

Theorem 1.13: Properties of Centralizer and Center

1. If G is abelian, for any A ⊂ G, we get CG(A) = G, in particular
Z(G) = G.
2. CG(A) is a group for any A ⊂ G.

Proof. 1. Since G is abelian, ga = ag for all a ∈ A, g ∈ G by definition.
Hence, CG(A) = G, in particular Z(G) = G.
2. Let A ⊂ G be any set. First of all, since ea = a = ae, we know that
e ∈ CG(A), next if g, g′ ∈ CG(A), we know that ga = ag, g′a = ag′, thus
gg′a = gag′ = agg′, thus gg′ ∈ CG(A). Similarly, g−1a = (a−1g)−1 =
(ga−1)−1 = ag−1, thus g−1 ∈ CG(A). Associative laws follow from group
operation of G, hence we know that CG(A) is a group for any A ⊂ G.

Examples of this tool follow:
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Exercise 1.14: Tool 14

1. Compute the center of D2n for any odd n.
2. Let G = SO(2) which are matrices in O(2) with determinant equal
to 1. This is the group of ”rotations” in 2D. Prove that this group acts
on S3, the unit sphere in R3 by rotation on the x-y plane, fixing z-axis.
Compute the orbit of any s ∈ S. For s ̸= N,S where N,S is the north
and south poles of S3, what is the stablizer of x under this action?
3. Prove that CG(Z(G)) = G.
4. What is the center of GL(n,R)?

Further exercises can be found on Dummit and Foote Exercise 1.7 and
Artin’s Algebra Exercise 2.5.

Tool 15: Subgroup or Not a Subgroup?

Some concepts used in this tool are from Tool 9 and Tool 14. Other concepts
of this tool are the following:

Definition 1.19: Subgroup

Given a group G, H ⊂ G is a subgroup of G if H is a group with the
same operation defined for G, i.e for all h, k ∈ H, hk ∈ H,h−1 ∈ H. e
is automatically in H since h ∈ H,h−1 ∈ H,hh−1 = e ∈ H. We write
H ≤ G.

Theorem 1.14: Criterion of Subgroup

Suppose H ⊂ G, H ̸= ∅ and G is a group. Then, we know that H ≤ G
if and only if for all h, k ∈ H, hk−1 ∈ H.

Proof. Firstly, suppose H ≤ G. Then we know that for all h, k ∈ H, k−1 ∈
H, hence hk−1 ∈ H.
Suppose hk−1 ∈ H for all h, k ∈ H. Then, we have that hh−1 = e ∈ H,
and thus since e, h ∈ H, eh−1 = h−1 ∈ H. Similarly, k−1 ∈ H, and we get

h(k−1−1
) = hk ∈ H, hence H ≤ K.

Definition 1.20: Generators

Given a group G, g1, . . . , gm ∈ G, we denote < g1, . . . , gm > to be the
smallest subgroup H of G containing g1, . . . , gm. We call g1, . . . , gm the
generators of H (not unique).
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Theorem 1.15: Properties of Generators

1. Finite group has a minimum set of generators.
2. Given a group G, | < g > | = |g| for all g ∈ G.

Proof. 1. We can find a procedure of finding the minimum set of generators
for a finite group G = {g1, . . . gn}, namely we first consider < g1 >. If
< g1 > ̸= G, we add in g2 and consider < g1, g2 > until < g1, . . . , gm >= G.
This is the set of minimum number of generators.
2. We know that < g >= {g, g2, g3, . . . , }. If |g| = n < ∞, we know that
gn = e, hence < g >= {g, g2, . . . , gn = e} and | < g > | = n = |g|.
If |g| = ∞, we know that g, g2, . . . are all different elements of G, thus
| < g > | = ∞ = |g|.

Examples of using this tool follow:

Exercise 1.15: Tool 15

1. Prove that whether the set of complex numbers {a+ ai : a ∈ R} is a
subgroup of C.
2. Prove that for n ∈ Z+, whether the set of rational numbers whose
denominators divide n is a subgroup of Q.
3. Prove that whether the set of reflections of D2n is a subgroup or not.
4. Prove that whether the set of real numbers whose square is rational
is a subgroup of R under addition or not.
5. Prove that given group |G| = n, G cannot have a subgroup H with
|H| = n− 1.
6. Let G be an abelian group. Prove that {g ∈ G : |g| < ∞} is a
subgroup of G (called torsion subgroup).
7. Suppose H ≤ G,K ≤ G, then H ∪K ≤ G if and only if H ⊂ K or
K ⊂ H. Prove that H ∩K ≤ G.
8. Show that H ≤ CG(H) if and only if H is abelian.

Further exercises can be found on Dummit and Foote Exercise 2.1-2.2 and
Artin’s Algebra Exercise 2.2.

Tool 16: Cyclic Subgroups and Their Generators

Concepts of this tool closely follow from the discussion of generators of Tool 15
and the discussion of order in Tool 3. Other concepts follow:

Definition 1.21: Cyclic Groups

A group G is cyclic if it can be generated by a single element, i.e. G =<
x > for some x ∈ G.
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Theorem 1.16: Properties of Cyclic Groups

1. Suppose G,H are cyclic groups of the same order. Then they are
isomorphic.
2. For G =< x >, if |x| = n < ∞, then G =< xa > if and only if
(n, a) = 1, if |x| = ∞, then G =< xa > if and only if a = ±1.
3. For a cyclic group G, every subgroup J ≤ G is cyclic.
4. Given a cyclic group G, suppose |G| = | < x > | = ∞, then for any
a, b ∈ Z, a ̸= b, we have < xa > ̸=< xb >.
5. Given a cyclic group G with |G| = n < ∞, for every a | n, there is a
unique subgroup K ≤ G such that |K| = a.

Proof. 1. Consider G =< x >,H =< y >, since |G| = |H|, we know
that G = {x, x2, . . . , xn, . . .}, H = {y, y2, . . . , yn, . . .}. Consider the map
ϕ : G → H such that ϕ(xa) = ya. Clearly this is bijective since we
know that x, x2, . . ., y, y2, . . . are all distinct and |G| = |H|. Also since
ϕ(xaxb) = ϕ(xa+b) = ya+b = yayb = ϕ(xa)ϕ(xb), thus ϕ is a homomor-
phism. Therefore, ϕ is an isomorphism, hence G ∼= H.
2. We are proving two cases. Firstly, suppose |G| = ∞, by construction a = 1
works for G =< x >, similarly, since G = {xn : n ∈ Z} = {x−n : n ∈ Z},
we know that G =< x−1 >. Next, consider a ̸= ±1, then we know that
< xa >= {xan : n ∈ Z}. However, in this case x /∈< xa > since other-
wise, we have x = xan for some n ∈ Z and xan−1 = e, which is impossible
as |G| = ∞, hence in this case < xa > ̸= G. Therefore, G =< xa > if
and only if a = ±1. Suppose |G| = n < ∞. Suppose G =< xa > for
some a, this means that {xa, x2a, . . . , x(n−1)a} are all distinct. In particu-
lar, it means xma = x for some m ∈ Z, hence n | ma − 1, which suggests
that (a, n) = 1. If (a, n) = 1 for some a ∈ Z, we know that by Bezout’s
identity, we have ma + kn = 1, thus yma + kyn = y, and we know that
xyma+kyn = xy = xyma · xkyn = xa(ym) for all 1 ≤ y ≤ n, hence we know
that every xy = xab for some b ∈ Z, therefore, G ⊂< xa >. However, we
also have < xa >⊂ G, hence G =< xa > in this case.
3. Given a cyclic group G =< x >, consider J ≤ G. Suppose
J = {xm1 , xm2 , . . .} such that m1 < m2 < . . .. Let a = m1. Suppose
xb ∈ J, a < b. Let d = (a, b). Firstly by Bezout’s identity, we know that
ka+ qb = d, hence we have xka · xqb = xd, xd ∈ J . However d ≤ a, hence we
know that d = a as we have ordered elements in J . Therefore, for all b > a,
(a, b) = a, we have shown that J =< xa >, which is cyclic.
4. Suppose by contradiction that for some a, b ∈ Z, a ̸= b, but < xa >=<
xb >. Hence, we know that xb = xan = xan, thus xan−b = e, hence
|x| = an − b, however this means that | < x > | = |x| = an − b < ∞,
which gives us a contradiction.
5. Firstly, we know that K ≤ G, so K is cyclic, K =< xm > for some
m ∈ Z and such that m is the smallest power of x that generates K. Thus,
we have {xm, x2m, . . . , x(a−1)m} since |K| = a. What we left to prove is
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that m is unique. We know that xam = e, hence n | am, n
a | m. Let

k = n
a . Hence, we know that < xm >⊂< xk >. However, we also have

| < xm > | = | < xk > | = a, which means that < xm >=< xk >, but since
m ≥ k and m is the smallest power of x that generates K, we know that
m = k. Therefore, we have shown the uniqueness of K.

Examples of using this tool follow:

Exercise 1.16: Tool 16

1. Find all subgroups of Z45 =< x > and give a generator for each.
2. Find all generators of Z/202Z.
3. Find all cyclic groups of D8, and find a proper subgroup of D8 that
is not cyclic.
4. Let Z36 =< x >. For which integers does the isomorphism ϕa : 1 7→ xa

extend to a well defined homomorphism from Z/48Z onto Z36? Can it
be surjective?
5. Show that if H is any group and h is an element of H, then there is
a unique homomorphism from Z to H such that 1 7→ h.
6. Let Zn be a cyclic group of order n. For each integer a ∈ Zn, define
σa : x 7→ xa for all x ∈ Zn. Prove that σa is an automorphism of Zn if
and only if (a, n) = 1. Prove that every automorphism of Zn is equal to
some σa.
7. Prove that above σa◦σb = σab. Deduce that a 7→ σa is an isomorphism
from (Z/nZ)× to Aut(Zn), where Aut is the automorphism group.
8. Describe all groups G that contain no proper subgroup.

Further exercises can be found on Dummit and Foote Exercise 2.3 and
Artin’s Algebra Exercise 2.4.

Tool 17: Cyclic or Not Cyclic?

Concepts of this tool closely follow from Tool 16.
Examples of using this tool follow:

Exercise 1.17: Tool 17

1. Prove that Z2 × Z2, Z× Z are not cyclic.
2. Prove that Z× Z2 is not isomorphic to Z.
3. Prove that Q×Q is not cyclic.
4. Show that (Z/2nZ)× is not cyclic for n ≥ 3.

Further exercises can be found on Dummit and Foote Exercise 2.3.
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Tool 18: Understanding Groups from Generators

Concepts of this tool mainly follow Tool 15 about generators. There is still one
more thing to note:

Definition 1.22: Groups generated by set

We define < S > be the group generated by set S, namely considering
all elements of S as generators and < S > is the group generated. G is
finitely generated is G =< S > for some finite S.

Examples of using this tool follow:

Exercise 1.18: Tool 18

1. Prove that if H is a subgroup of G, H ̸= {1}, then < H >=<
H − {1} >= H.
2. Prove that the dihedral group D8 is isomorphic to < (12), (13)(24) >.
3. Prove that Q is not finitely generated.

Further exercises can be found on Dummit and Foote Exercise 2.4.

Tool 19: Normal Subgroups

The concepts used in this tool follow:

Definition 1.23: Normal Subgroups

Given a group G, a subgroup H ≤ G is called normal if ghg−1 ∈ H for
all g ∈ G, h ∈ H. This can also be noted as gHg−1 = H, i.e. gH = Hg.
The notation for H being a normal subgroup is H ⊴ G.

Definition 1.24: Normalizer

Let N ≤ G be a subgroup of the group G. We define the normalizer
of N in G (denoted NG(N)) to be the set that {g ∈ G : gng−1 ∈
N for all n ∈ N . }.

Theorem 1.17: Kernel of Homomorphism is Normal

Given a homomorphism ϕ : G → H where G,H are groups. Then,
Ker(ϕ) ⊴ G.
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Proof. Suppose x ∈ Ker(ϕ), g ∈ G. We are trying to show that gxg−1 ∈
Ker(ϕ). We know that ϕ(gxg−1) = ϕ(g)ϕ(x)ϕ(g−1) = ϕ(g)eϕ(g−1) =
ϕ(gg−1) = e, thus gxg−1 ∈ Ker(ϕ), and we are done.

Examples of using this tool follow:

Exercise 1.19: Tool 19

1. Suppose ϕ : G → H is a homomorphism, K ⊴ H. Show that
ϕ−1(K) ⊴ G.
2. Prove that given group G, if N ⊴ G and H ≤ G, then N ∩H ⊴ H.
3. Let N be a finite subgroup of G. Show that gNg−1 ⊂ N if and only
if gNg−1 = N .
4. Let N ≤ G and g ∈ G, where G is a group. Prove that gN = Ng if
and only if g ∈ NG(N).
5. Prove that SLn(F ) ⊴ GLn(F ).
6. Let G be a group. Prove that N =< x−1y−1xy : x, y ∈ G > is normal
in G. N is called the ”commutator” of G.
7. Assume both H and K are normal subgroups of G with H ∩K = 1.
Prove that xy = yx for all x ∈ H, y ∈ K.

Further exercises can be found on Dummit and Foote Exercises 3.1.

Tool 20: Cosets and Lagrange

Definition 1.25: Cosets

A coset is a set of the form Hg = {hg : h ∈ H} for fixed g ∈ G, H ≤ G.
This is called the ”right cosets” of H, we can define similarly for the ”left
cosets”.

Theorem 1.18: Different cosets do not intersect

If two cosets Hg,Hg′ intersect, then they are the same.

Proof. Suppose Hg ∩ Hg′ ̸= ∅. Assume hg = h′g′. Then, we know that
g = h−1h′g′, hence g ∈ Hg′. Therefore, Hg ⊂ Hg′. Similarly, we know that
g′ = h′−1hg, hence g′ ∈ Hg, and we have Hg′ ⊂ Hg, hence Hg = Hg′.

Theorem 1.19: Coset Cardinality

Given H ≤ G, we have |Hg| = |H| for all g ∈ G.
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Proof. Suppose h1g = h2g, then we know that h1 = h2 by cancellation
law. Hence, we know that hg, h′g is different as long as h ̸= h′. Therefore,
|Hg| = |H|.

Theorem 1.20: Lagrange Theorem

Given group G and H ≤ G, the right cosets of H partition G, i.e. G =
∪Hgi, where gi are the representatives of each coset. Hence, if |G| <∞,

then |H| | |G|. We denote [G : H] = |G|
|H| , called the ”index” of H in G.

We finally get |G| = [G : H] · |H|.

Proof. Firstly, by previous theorems, we know that different cosets do not
intersect and both have cardinality of |H|. We know that G is the disjoint
union of different Hgi’s, where each of them have the cardinality of |H|.
Therefore, |H| | |G|, and |G| = [G : H] · |H|.

Theorem 1.21: Abelian G has same left and right cosets

Suppose G is an abelian group, then given H ≤ G, gH = Hg.

Proof. The proof of this theorem is very straight-forward, hence left as an
exercise with solutions in solution file.

Examples of using this tool follow:

Exercise 1.20: Tool 20

1. Suppose that [G : H] = 2, prove that H ⊴ G. Show by example that
[G : H] = 3 by H is not a normal subgroup of G.
2. If |G| = 13, find all subgroups H ≤ G.
3. Does every group whose order is a power of prime p contain an element
of order p?
4. Does a group of order 35 contain an element of order 5 and another
element of order 7?
5. Prove that if H and K are finite subgroups of G whose orders are
relatively prime, then H ∩K = 1.
6. Let H ≤ G. Define the map x 7→ x−1 for all g ∈ G. Prove that
this map sends every left coset of H to a right coset of H, and gives a
bijection between left and right cosets.
7. Let G be a finite group and suppose H ≤ G, N ⊴ G. Prove that if
|H| and [G : N ] are relatively prime then H ≤ N .
8. Use Lagrange’s Theorem in the multiplicative group Z/nZ to prove
Euler’s Theorem that aϕ(n) ≡ 1 mod n for all a relatively prime to n,
where ϕ denotes the Euler totient function.

Further exercises can be found at Dummit and Foote Exercise 3.2 and Artin’s
Algebra Exercise 2.8.
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Tool 21: The 1st Isomorphism Theorem

Theorem 1.22: 1st Isomorphism Theorem

Given ϕ : G → H a homomorphism between groups, we know that
kerϕ ⊴ G and G/ker(ϕ) ∼= ϕ(G).

Proof. We have already shown before that kerϕ ⊴ G, and we can define an
isomorphism ψ : G/ker(ϕ) ∼= ϕ(G) given by g · ker(ϕ) 7→ ϕ(g), this is an
isomorphism.

Corollary 1.1

Let ϕ : G→ H be a homomorphism of groups. Then, we know that ϕ is
injective if and only if ker(ϕ) = 1. Also, |G : ker(ϕ)| = |ϕ(G)|.

Proof. The proof of this corollary is very straight forward, hence left as an
exercise (with solutions in the solution file).

Examples of using this tool follow:

Exercise 1.21

1. Let F be a finite field of order q, let n ∈ Z+. Prove that |GLn(F ) :
SLn(F )| = q − 1.
2. Suppose C ⊴ A, D ⊴ B, prove that (C × D) ⊴ (A × B) and (A ×
B)/(C ×D) ∼= (A/C)× (B/D).
3. Let M,N ⊴ G, with G = MN . Prove that G/(M ∩N) ∼= (G/M) ×
(G/N).

Further exercises can be found at Dummit and Foote Exercise 3.3.

Tool 22: The 2nd, 3rd and 4th Isomorphism Theorems

Theorem 1.23: 2nd Isomorphism Theorem

Let G be a group, and suppose A,B ≤ G, with A ≤ NG(B). Then, AB
is a subgroup of G, B ⊴ AB and A ∩B ⊴ A with AB/B = A/(A ∩B).

Proof. Firstly, given a1b1, a2b2 ∈ AB, we know that a1b1(a2b2)
−1 =

a1b1b
−1
2 a−1

2 = a1a
−1
2 (a2b1b

−1
2 a−1

2 ) ∈ AB, thus AB ≤ G.
Next, given ab ∈ AB, b′ ∈ B, we know that abb′(ab)−1 = abb′b−1a−1 ∈ B
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since A ≤ NG(B), hence B ⊴ AB. Given x ∈ A ∩ B, a ∈ A, we know that
axa−1 ∈ B since A ≤ NG(B), x ∈ B and axa−1 ∈ A since x ∈ A, thus
axa−1 ∈ A ∩B, A ∩B ⊴ A.
Finally, we can define a group homomorphism AB → A/(A ∩ B) by
ab 7→ a(A ∩ B). Then, we know that this is a group homomorphism as
(ab) · (a′b′) = aa′(a′−1ba′b′) 7→ aa′(A ∩ B) with kernel a = e, i.e. ab = b.
Thus the kernel of this map is B. Therefore, AB/B ∼= A/(A∩B) by the 1st
isomorphism theorem.

Theorem 1.24: 3rd Isomorphism Theorem

Let G be a group and H,K ⊴ G with H ≤ K. Then, K/H ⊴ G/H, and
(G/H)/(K/H) ∼= G/K.

Proof. Consider kH ∈ K/H and gH ∈ G/H, then we know that gH ·
kH · g−1H = gHg−1 · gkg−1 · gHg−1 · H = H(gkg−1) · H = (gkg−1) ·
(gkg−1)

−1
H(gkg−1) ·H = gkg−1H ∈ K/H.

We can then define a homomorphism by G/H → G/K that gH 7→ gK, then
we know that the kernal of this homomorphism is g ∈ K, i.e. gH ∈ K/H,
thus by 1st isomorphism theorem, we have (G/H)/(K/H) ∼= G/K.

Theorem 1.25: 4th (Lattice) Isomorphism Theorem

Let G be a group and N ⊴ G. Then there is a bijection between A ≤ G
and A = A/N ≤ G/N . In particular, every subgroup of G is of the form
A for some A ≤ G with N ⊴ A. This bijection also has the following
properties:

• A ≤ B if and only if A ≤ B.

• If A ≤ B, then [B : A] = [B : A].

• < A,B > =< A,B >.

• A ∩B = A ∩B

• A ⊴ G if and only if A ⊴ G.

Proof. The proof is just detailed computation, so we will leave as exercise
(see solution file).

Examples of using this tool follow:
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Exercise 1.22

1. Prove that if H ⊴ G with prime index p, then for all K ≤ G, either
K ≤ H, or G = HK and |K : K ∩H| = p.
2. Let p be a prime and let G be a group of order pαm, where p ∤ m.
Assume P ≤ G of order pα and N ⊴ G of order pbn, where p does not
divide n. Prove that |P ∩N | = pb, and |PN/N | = pa−b.

Further exercises can be found at Dummit and Foote Exercise 3.3.
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