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1. The Alphabet

1.1 Sets

1.1.1 The Third Mathematical Crisis

Before communicating freely in any language, we first need to understand the words of that language.
Even before this, we need to know the building blocks of words, the alphabet. For the mathematical
language, we will first understand what the concept of alphabet means. For different purposes
in math, we define different alphabets, hence different mathematical structures arise from these
alphabets. The basic concept of alphabet is called sets.

Definition 1.1.1 — Sets. A set is a collection of objects. We call an object x "an element of a set

S" if x is contained in S, denoted x 2 S.

⌅ Example 1.1 — Examples of Sets. ⌅

• S = {1,2,3} is a finite set since S only has finite number (3) items.
• S = {. . . ,�2,�1,0,1,2, . . .} is an infinite set (often denoted as Z, the integers).
• S = {MAT157, MAT240, CSC148, CSC165} is a set of courses a typical student wishing to

study math and CS would take at U of T.
• S = {a,b,c,d, . . . ,z} is a set of letters used in English, which is exactly the alphabet of English.

R Here, objects do not necessarily refer to mathematical objects, in fact it can be anything. A set

is also an object itself.

Definition 1.1.2 The number of elements in a set S is called its cardinality, denoted #S or |S|.

⌅ Example 1.2 — Cardinality. ⌅

The examples in example 1.1 has cardinality 3,•,4,26 respectively. We call a set S finite if $S is
finite, and otherwise we call S to be infinite.
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The above definition of sets gives rise to the following question: is the collection of all sets a set
or not a set? Both answers will lead to a contradiction. This is known as the Russel’s paradox and
the third mathematical crisis. To address this problem, various set theories were proposed, the most
famous one being what is known as the "axiom of choice". However, we will now go into further
details about these philosophical analysis on mathematics. We will focus more on the understanding
of the math language.

1.1.2 Subsets

In fact, the mathematical language is much more general than any language we speak, for example
English. One of the main reason is that we can extend or narrow our alphabet used while still having
meaningful conversations, which is not possible for English (imagine using only a,b,c for daily
lives). Narrowing down a set gives rise to the definition of subsets and intersection of sets. Extending
a set gives rise to the definition of union of sets.

Definition 1.1.3 The sub-collection of objects (let us denote it C) in a set S is called a subset of
S, denoted C ⇢ S.

⌅ Example 1.3 — Examples of subsets. ⌅

• C = {1}, D = {2,3} are both subsets of S = {1,2,3}.
• We denote the empty collection of objects /0. This is a subset of any set S.
• A proper subset C of a given set S is a subset C ⇢ S with extra constraint that C and S are not

the same collection. This can be emphasized using notation C ( S.

Definition 1.1.4 Given two sets A and B, we call the intersection of A and B another set C : {x :
x 2 A and x 2 B}, denoted C = A\B.

⌅ Example 1.4 — Set intersection. ⌅

• Let S = {1,2,3}, T = {1,3,5}, then S\T = {1,3}.
• Let S = {1,2,3}, T = {4}, then S\T = /0. If two sets have empty intersection, we call them

disjoint sets.
• From the definition of subsets, we can see that if A ⇢ B, A\B = A.

On the contrary of narrowing down to common elements of two sets which is the intersection
described above, we have another operation on sets called the union of sets, which extends two sets
to a set containing all appearing elements in them.

Definition 1.1.5 Given sets A,B, we define the union of A and B to be the set C = {x : x 2 A or x 2
B}. We denote C = A[B.

⌅ Example 1.5 — Set union. ⌅

• Let S = {1,2,3}, T = {1,3,5}, then S[T = {1,2,3,5}.
• From the definition of subsets, we can see that if A ⇢ B, A[B = B.

There is sometimes another operation on sets that we care about, which involves dealing with what
elements are not in a particular subset.
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Definition 1.1.6 Given set A and set S ⇢ A, the complement of S in A, denoted S
c or A\S is the

set T = {x : x 2 A and x /2 S}.

With the concept of subsets, intersection, union and complements defined, we can prove interesting
properties on sets. In fact, there is an area of mathematics called set theory, and an introductory
course to this is MAT409.
Different mathematical structures you will encounter often uses different alphabets, discussing rela-
tionships between these alphabets also allows us to discuss relationships between these mathematical
structures.

1.1.3 Operations and Closedness

Beauty of mathematics begins to appear when we discuss how to combine letters in the alphabet to
produce "words". The ways of combining letters to get words is known as operations.
An important difference between the mathematical language and natural language is that in some
mathematical structures, combining letters in the alphabet using a defined operation can only give
rise to other letters in the alphabet and nothing outside of this alphabet. In this case, this mathematical
structure is said to be "closed" under the defined operation. We now will define closedness formally.
This allows us to understand the mathematical language we would like to use in analysis later on.
We will begin by defining the concept of operation.

Definition 1.1.7 An operation on a set S is an assignment of a unique element s 2 S to a fixed
number of elements in S.

⌅ Example 1.6 — Operations. ⌅

• By definition, the addition "+" and multiplication "·" defined on R is an operation that assigns
a unique number x 2 R given 2 elements a,b 2 R, denoted x = a+b or x = a ·b, respectively.

• It is also an operation to assign any unique element x 2 S given the whole set of elements in S.
Definition 1.1.8 Given an operation · defined on a set S, a subset A ⇢ S is said to be closed under
this operation if for all x,y 2 A, x · y 2 A.

R By definition of closedness and operation, we know that given an operation · defined on S, S is
automatically closed under this operation.

⌅ Example 1.7 — Operation and Closedness. ⌅

• Using the normal definition of addition as the operation, integers Z, rationals Q and real
numbers R are all closed under this operation.

• With the normal definition of multiplication as the operation, integers Z, rationals Q and real
numbers R are also closed under this operation.

• With the normal definition of division, rationals Q and real numbers R are still closed under
this operation. However, Z is not closed under division since 1

2 /2 Z.

R In the above example, "normal" just mean that addition and multiplication are defined as what
we always know, 1+2 = 3,3 ·2 = 6 and so on.
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1.2 Mathematical Structures

Most mathematical structures that we are ever interested in are sets closed under one or more kind of
operations. Additional properties give rise to various mathematical structures we care about. The
concept of mathematical structures lies in the area of abstract algebra, and the details will be covered
in MAT347Y1.
As of now, it is important to understand the very basics of these structures as our primary interest,
the real numbers R, is assumed to be a member of an important type of mathematical structure.

1.2.1 Groups

Definition 1.2.1 A magma (binar, groupoid) (M,?) is a set M that is closed under operation ?
with no additional property assumptions.

⌅ Example 1.8 — Magma. ⌅

Since R is closed under addition and multiplication, we can define the operation x ? y to be any
combination of adding and multiplying x or y together and conclude that R, together with the
operation ? is a magma, for example x? y = x

6
y+ x

3
y

3, then (R,?) in this case is a magma.

Definition 1.2.2 A semigroup (M,?) is a magma M that satisfies associative law: a? (b? c) =
(a?b)? c, for all a,b,c 2 M.

⌅ Example 1.9 — Semigroup. ⌅

The set {0,1} can be equipped with operation "AND", "OR" and result in two semigroups. We
define a AND b = 1 only when a = b = 1, and a AND b = 0 otherwise. We define a OR b = 1 when
either a or b is 1, and a OR b = 0 otherwise, for all a,b 2 {0,1}. An exercise is to try to verify that
this is associative.

Definition 1.2.3 A monoid (M,?) is a semigroup M with an identity e 2 M such that for all
a 2 M, a? e = e?a = a.

⌅ Example 1.10 — Monoid. ⌅

The first example is a "flip-flop" monoid, which is the set {a,b,c} where a represents operation
"SET", b represents operation "RESET" and c represents operation "DO NOTHING". We know that
a?b = c, a? c = a, b? c = b, thus the identity element is c. An exercise is to try to verify that the
"flip-flop" monoid is associative.

With grounds layed, we can talk about one of the most important algebraic structures - groups.

Definition 1.2.4 A group (M,?) is a monoid M with an additional operation inv on M, where we
denote inv(g) = g

�1 2 M for all g 2 M. This operation satisfies that g?g
�1 = g

�1 ?g = e. If for
all a,b 2 M, we also have a?b = b?a, we call the group to be abelian.

⌅ Example 1.11 — groups. ⌅

• We call the Hamiltonian Quarternions H= {±1,±i,± j,±k} to be the set of 8 elements with
operation ·, where 12 = 1 = (�1)2, i

2 = j
2 = k

2 = �1, i j = k = � ji, jk = i = �k j and
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ik = j =�ki. You can check that it is indeed a group (it satisfies associative laws, has identity
and inversion operation).

• We call Klein four group K= {1,a,b,c} to be the set of 4 elements with operation ·, where 1
is the identity and a ·b = c = b ·a, b · c = a = c ·b, a · c = b = c ·a. This is an example of an
abelian group.

R It is easy to see once the inverse of an element m2M exists, then it is unique. Suppose m has two
inverses m1,m2, then we know that m?m1 = m?m2 = e, hence (m1 ?m)?m1 = (m1 ?m)?m2,
and we conclude m1 = m2. Therefore, the inverse is unique if it exists.

1.2.2 Fields and R

Definition 1.2.5 A ring is an abelian group (M,?) equipped with another operation · different
from ?, such that M is closed under · and associativity holds for ·. A ring is commutative if M is
commutative under ·, i.e., for all a,b 2 M, a ·b = b ·a.

R Note that the identity for · may be different from the identity for ?. Notation wise, we often
define the inverse of a 2 M under ? to be �a and inverse of a under · to be a

�1.

⌅ Example 1.12 — Rings. ⌅

The integers Z is a classic example of a ring. It is easy to check that (Z,+) is an abelian group, and
(Z, ·) is associative.

In fact the reason why Z is a ring is purely by definition (assumption). This assumption comes from
a broader assumption about R. Before we go into this assumption about the "words" which is also
our alphabet for the rest of the notes, we need to understand the concept of fields.

Definition 1.2.6 A field is a commutative ring (M,?, ·) with an inversion operation defined on
F\{e} for ·, where e is the identity for operation ?.

It is important to note that up to this point, we know that field F with operations ?, · and identities
e,e0 respectively has the following properties. For all a,b,c 2 F, a 6= e:

• Associative Law for ?: a? (b? c) = (a?b)? c.
• Existence of identity for ?: a? e = e?a = a.
• Existence of inverse for ?: a? (�a) = e = (�a)?a.
• Commutativity for ?: a?b = b?a.
• Associative Law for ·: a · (b · c) = (a ·b) · c.
• Existence of identity for ·: a · e0 = e

0 ·a = a.
• Existence of inverse for ·: a ·a�1 = e

0 = a
�1 ·a.

• Commutativity for ·: a ·b = b ·a.

R We sometimes denote e by 0, and e
0 by 1.

The above 8 properties are also called field axioms. Now, we are finally able to understand the
"words" of our mathematical language which is the real numbers R. We begin by making assump-
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tions on our words R as follows:

Theorem 1.2.1 R with operations addition (+) and multiplication (·) is a field.

This is the end of this chapter, but the starting point of everything that follows. We assumed that
our alphabet is also our words R and we equipped lots of interesting field axioms on R. Just as the
English words, we have nouns, verbs and different type of nouns, etc.. We will talk about different
types of words in R, including Q,Z, and N in the next chapter. We will also talk about logics and
proofs that somewhat defines the "grammar" of the math language.



2. The Words R

In this chapter, we will be talking and learning about our words for (Real) analysis, which is the
real numbers R. The words for complex analysis is the complex numbers C, which we will not talk
about it here. Introduction to complex analysis course MAT354 takes care of this topic. There are
many types of words, and most of the time to learn a language is spent on learning nouns, and here
in real analysis, majority of the time will also be about nouns. As we will see, the nouns for R are
the rationals, Q. There are also many types of nouns such as Z and N, which we will introduce in
this chapter. In mathematical language, we associate emotions with words. We will also talk about
emotions in this chapter, so that we can begin our dialogue(conversation) in the next one.
In this chapter, we will start talking about building blocks of analysis, in fact of all mathematics,
which are logics and proofs, and we will end off the chapter with a specific proof technique of
mathematical induction which gives properties of our specific nouns N and an official definition of
our words R.

2.1 Logics and Proofs

This section might be a little boring with symbols and abstract logic, however it serves as the
foundation for all analysis. In fact, both math language and our natural language can be thought as a
formal system, where the "rules" of this system is the grammar of the language. A proof in math
language intuitively is a paragraph written using math words, but it must follow the correct grammar
of mathematical language, which is logic.

In this section, we aim to be able to understand the logic behind the proofs, and throughout the notes,
I am describing the natural language analogy to build intuition behind almost all proofs. With good
intuition and clear logic flows, successful proofs come out of good understanding of mathematics
and the beauty of math arises from these proofs.
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2.1.1 Implications and Negations

In this section, we will first explain the mathematical equivalent of the "if...then..." sentence, which
is implication and the symbol ), ( and () . Before this, we need to understand that a boolean

variable is a variable that can only have value "True" or "False", and a logic statement is a statement
consisting of math symbols, numbers and boolean variables that can only be evaluated "True" or
"False". We will often write "statement" instead of "logic statement".

Definition 2.1.1 We denote A ) B to represent "if A then B". Here, A,B are boolean variables or
logic statements. The statement A ) B is true precisely when A is False or B is True. Similarly,
the statement A ( B is equivalent to B ) A. The statement A () B is True only when both
A ) B and B ) A are True. We sometimes call A and B to be equivalent if A () B is True.

⌅ Example 2.1 — Implications. ⌅

• The statement "If U of T is easy, then
p

2 is irrational." is True since in this case A ="U of T
is easy", which is False. However, this is not a valid proof of

p
2 being irrational, as we will

see later on.
• The statement "If U of T is hard, then

p
2 is rational" is False since in this case although

A ="U of T is hard" is True,
p

2 is not rational.

R We can have a chain of same direction implications, for example A1 ) A2, A2 ) A3, . . . . In
this case, we can simply notation and write A1 ) A2 ) A3 ) . . ..

Next, we will talk about the mathematical equivalence of the word "not", which is negations.

Definition 2.1.2 A negation is a logical statement of the form "not A", denoted ¬A, is true only

when A is False.

Exercise: Verify the following statements are True:

(A ) B) () (¬B ) ¬A)

¬(¬A) () A

⌅

R A good method of verifying two logic statements to be equivalent is to compare the cases when
they are each True/False, and verify that they are both True or they are both False.

2.1.2 Conjunctions and Disjunctions

In this section, we will describe two important logical connections – conjunctions and disjunctions.
This is the mathematical equivalence of "and" and "or", respectively.

Definition 2.1.3 We use A AND B to denote the logical conjunction, which is True only when A

and B are both True. We use A OR B to denote the logical disjunction, which is True if one of A

or B is True, or if both of them are True.
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Exercise: Verify that the following logic statements are True (De Morgan’s Laws):

¬(A OR B) () ¬A AND ¬B.

¬(A AND B) () ¬A OR ¬B.

⌅

Exercise: Verify that the following logic statement is True:

(A ) B) () ¬A OR B

⌅

2.1.3 Quantifiers

In this section, we are going to talk about two important quantifiers, existential quantifier (which
corresponds to "there exists") and universal quantifier (which corresponds to "for all"). Using
quantifiers and previously described logic symbols, we can form comprehensive logical statements
used in mathematical proofs.

Definition 2.1.4 We use symbol 9 to denotes that "there exists" and the symbol 8 to denote "for
all". Both quantifiers need to combine with sets (called the domains of the quantifiers) to make
sense. A statement of 9 is True if there is an element in the domain that makes the statement True.
A statement of 8 is True if every element in the domain makes the statement True.

⌅ Example 2.2 — Quantifiers. ⌅

• Consider the statement 8x 2 R.9a 2 Z.a < x. This statement is True only when for x being
any real number, we can find a specific integer a smaller than this x. The choice of a can

depend on the value of x.
• Consider the statement 9x 2 Z.8a 2 R

+.|x|< |a|. This statement is True only when we can
find an integer x such that any positive real number a satisfies |x|< |a|. The value of x does
not depend on any value of a.

Exercise: Verify that the following statements are True (A is a domain and B is a statement):

¬(8x 2 A.B.) () 9x 2 A.¬B.

¬(9x 2 A.B.) () 8x 2 A.¬B.

⌅

After the above exercises, you can get a complete understanding of how to negate a specific logic
statement. There are several steps to this process, including:

1. Change any implications into conjunctions and disjunctions by definition and the second
exercise in 2.1.2.

2. Distribute ¬ inward, changing conjunctions and disjunctions accordingly by De Morgan’s
Laws, and swap 9 and 8 by the above exercises.

3. When there is double ¬, remove them, according to previous exercises in 2.1.1.
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⌅ Example 2.3 We would like to change the statement

A = ”8e > 0.8x < 1.9N 2 N.8n 2 N.n > N ) x
n < e.”

to ¬A.

1. Firstly, we rewrite A to be:

A = ”8e > 0.8x < 1.9N 2 N.8n 2 N.[¬(n > N) OR (xn < e)].”

2. Next, we distribute ¬ inward, to get:

¬A = ”9e > 0.9x < 1.8N 2 N.9n 2 N.¬(¬(n > N)) AND ¬(xn < e).”

3. Finally, we negate the < and >, as well as removing double ¬ and get:

¬A = ”9e > 0.9x < 1.8N 2 N.9n 2 N.n > N AND x
n � e.”

⌅

2.1.4 Proofs, finally

A proof is describing a logical flow to show that a statement is True via a fixed set of True statements.
This is the most important technique we use to establish new math results (to add to the set of True
statements) and to practise mathematical language. There are various types of proof techniques, and
here in this chapter, we will only describe the basic ones. We will start by the most standard proof
technique – proof by logical deduction.

Definition 2.1.5 A logical deduction is the method of showing a statement Y is True by showing
that X is True and the statement X ) Y is True.

Let us denote the statement we would like to prove G. Proof by logical deduction is a proof technique
that starts with known-True statement A in the fixed set of True statements (this can be axioms,
definitions or proved theorems, propositions and statements) and use a series of logical deductions,
to finally show that G is True.

⌅ Example 2.4 Prove that if F is a field, then we have cancellation law: if a · b = c · b where
a,b,c 2 F, b 6= 0 2 F, then a = c.
Proof. We will start with the known-True statement in the question, which is a ·b = c ·b.
Then, by properties of equality, we know that if x = y, then x · z = y · z for any z. This allows us to
make the logical deduction to show that:

a ·b ·b�1 = c ·b ·b�1.

(Of course this also uses the fact that b
�1 2 F exists since F is a field, which is a more subtle logical

deduction.)
Then, we can use the associative law of field F and properties of equality to show that:

a ·b ·b�1 = a · (b ·b�1) = a · e = a = c ·b ·b�1 = c · (b ·b�1) = c · e = c.

(Above is another logical deduction.)
Finally, we have shown that a = c, which is the statement we would like to prove (G), hence above
completes this proof. ⇤
⌅
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Next, we will talk about another very important technique of proof - proof by contradiction.

Definition 2.1.6 A proof by contradiction is an argument of showing that a statement G is True
through assuming ¬G is True, and prove ¬Y is True via logical deduction for some known True
statement Y in the fixed set of True statements. The fact that ¬Y is proved and Y is True is called
a contradiction.

R Intuitively, this is just assuming the statement we are proving to be False, then find a contradic-
tion with a known True statement. Then, this implies that the statement we are proving is not
False, hence True.

⌅ Example 2.5 ⌅

Prove that
p

2 is irrational (i.e.
p

2 cannot be written in the form of p

q
for any integers p,q 2 Z.)

Proof. Suppose that
p

2 is not irrational, i.e.
p

2 = p

q
for some p,q 2 Z. (First step in proof by

contradiction). We can assume that they are reduced into lowest terms, i.e. p,q have no common
factors (since if they have common factors, we can further reduce them until they don’t).
Then, by properties of equality, we know that

p
2 · q = p

q
· q = p. Next, by properties of equality

again, we can square both sides of the equality and get:

2q
2 = p

2.

Next, we would like to form contradiction with the help of even/odd properties statements that are
known to be True. Firstly, since 2q

2 is even, 2q
2 = p

2, p
2 is even. Since the square of an odd integer

is odd, the only way for p
2 to be even is that p is even. By definition of "even", we can write p = 2k

for some k 2 Z, then we know that 2q
2 = p

2 = (2k)2 = 4k
2, hence by properties of equality, we can

divide 2 on both sides and get:
q

2 = 2k
2.

With similar arguments as above, we know that q
2 is even, thus q is even. However, p,q are both

even suggests that they have a common factor 2.
However, at the start of the proof, we assumed that p,q have no common factors, this gives us a
contradiction. Therefore, we have proved by contradiction that

p
2 is irrational. ⇤

The third proof technique that we will talk about in this section is proof by cases, which is very
useful if adding in additional property assumptions (i.e., cases), the statement of interest is easier to
prove.

Definition 2.1.7 A proof by cases is a proof for a statement of interest involving elements from
a specific domain D, given by first choose finitely many subsets D1,D2, . . . ,Dn ⇢ D such that
D1 [D2 · · ·Dn = D. Then, for each specific subset, prove the statement using proof by logical
deduction or contradiction. Each subset D1,D2, . . . are called cases.

This proof technique becomes very intuitive once we understand an example.

⌅ Example 2.6 ⌅
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Prove that for all a,b 2 R, the absolute value |ab|= |a||b|. The definition of the absolute value
is that for all x 2 R, |x|= x if x � 0, and |x|=�x otherwise.
Proof. We will consider four cases and do a proof by cases in the following way:
Case 1. a,b � 0.
Then, we know that ab � 0, thus |ab| = ab = |a||b| by definition of absolute value. Hence, the
statement is proved for Case 1.
Case 2. a � 0,b < 0.
Then, we know that ab  0, thus |ab|=�ab = a(�b) = |a||b| by definition of absolute value. Hence,
the statement is proved for Case 2.
Case 3. a < 0,b � 0.
Similar to Case 2, we know that ab  0, |ab|=�ab = |a||b| by definition of absolute value. Hence,
the statement is proved for Case 3.
Case 4. a < 0,b < 0.
In this case, we know that ab > 0, thus |ab| = ab = (�a)(�b) = |a||b| by definition of absolute
value. Hence, the statement is proved for Case 4.
Then, since the four cases above cover every possible case for a,b 2 R, we know that |ab|= |a||b| is
proved via a proof by cases. ⇤

The proof by logical deduction and proof by contradiction are two classic proof techniques that are
used frequently. Often times, when the domain of proof is too "general", we can break it down into
cases and use logical deduction and contradiction to prove each case separately. This constitutes a
proof by cases. There is another well-known and important proof technique - proof by mathematical

induction. However, that depends on a bit more knowledge about the math language, especially the
words that we are speaking.

2.2 Nouns

As I explained before, learning nouns are a core part of studying and understanding a language. In
real analysis, we will treat R as the whole universe of words, and Q, the rationals are the nouns here.
Let us start by understanding various type of nouns and then understand what Q is.

2.2.1 The Proper Nouns

In natural language, proper nouns are nouns that represent specific people, places and things. In
our daily language, they are often the items with lots of functionalities, memories or knowledge
associated. In mathematics language, the proper nouns are very "nice" numbers in the universe of
nouns Q.

Definition 2.2.1 The integers Z, or the proper nouns in the math language is a set of numbers
containing the multiplicative identity 1 2 R, the additive identity 0 2 R, all additive multiples
of 1 and their additive inverses. The notation is to denote 2 = 1+ 1, 3 = 1+ 1+ 1, . . . as
we normally use. We use �x to denote the additive inverses of x for all x 2 R. Thus, Z =
{. . . ,�3,�2,�1,0,1,2,3, . . .}.

R Z has the same addition and multiplication defined for R, and in section 1, we have already
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showed that Z is a ring but not a field since it does not have multiplicative inverses.

With the definition of the "proper nouns" Z, we can define another very important type of nouns -
the natural numbers N.

Definition 2.2.2 The set of natural numbers, denoted N is the set of all additive multiples of
1 2 R, i.e. N= {1,2, . . .}.

Based on this definition, we can see that the set of natural numbers is a subset of the integers Z
but is not even a group since we do not include 0 and additive inverses. However, with this definition,
we are able to find very important properties of the natural numbers, and propose another proof
technique later on. After our discussion of emotions and ordered fields, we can also form intuition
on N.

2.2.2 All Nouns from Proper Nouns

With the definition, or rather classification of proper nouns Z from all words, we can finally classify
the universe of nouns, namely Q.

Definition 2.2.3 A number x 2 R is a mathematical noun (or we usually call it rational number

if x = p

q
for some p,q 2 Z. We denote the set of all rational numbers Q, and they are all nouns of

the math language. q in x = p

q
is called the denominator of x, and p is called the numerator of x.

R We have briefly discussed that Q with the same addition and multiplication defined as in R is
also a field. This can be shown since for every x = p

q
2Q, x

�1 = q

p
. We say Q is a subfield of

R.

With the definition, we notice that there exists multiple ways to write a rational number x as
the quotient of two integers. For example, 3

4 = 9
12 = 12

16 = . . .. In the proof that
p

2 is irrational
before, we briefly talked about the concept of "rational in lowest terms". We will now make it formal.

Definition 2.2.4 A rational x 2Q is said to be written in lowest terms
p

q
(p,q 2 Z) if x = p

q
and

for any p
0,q0 2 Z such that x = p

0

q0 , we know that q
0 � q.

R In the above definition, we are saying that x = p

q
is written in lowest terms if p

q
is the way to

write x into quotients of integers for q to be the smallest.

2.3 Emotions

In fact, the most important intuition to have about the mathematical language used in analysis is the
"emotions" of words. In the current real analysis domain, our universe of words is R, our nouns are
Q which are generated from proper nouns Z. In English, we often have subtle emotions associated
with each noun, "table", "professor", "mathematics", "U of T", "The Cows", or "Tim Hortons".
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We put them into conversations where emotions move in. In fact, every math word has emotions
associated with it and in this section, we will make sense of the idea of "emotion" in math words.
Before we try to understand the strength of emotions and compare emotions of words, we first need
to gain the sense of order. More generally, we will talk about the notion of order on general fields.

Definition 2.3.1 An ordered field is a field F with the notion of the set of positive elements P

and the set of negative elements N, such that it satisfies three properties:
• P\N = /0; 0 /2 P,N; P[N [{0}= F, where 0 is the additive identity of F.
• For all a,b 2 P, a+b 2 P.
• For all a,b 2 P, ab 2 P.

With the notion of "order" defined as above, we can finally make concrete of the notion of "less
than" and "greater than".

Definition 2.3.2 For all a,b 2 F which is an ordered field, we say a > b (a is greater than b) if
a�b 2 P, a < b (a is less than b) if a�b 2 N and a = b if a�b = 0.

R We often use the notation of a � b to represent "a > b OR a = b" is True, and a  b likewise.

There are various properties of order and some of them are listed below. Proofs are left as
exercises since almost all the properties directly follow from definition of order, or previously proved
properties.

Proposition 2.3.1 For any a,b,c,d 2 F, which is an ordered field, we have:
• Exactly one of a > b, a < b, a = b is True.
• a > b () b < a

• a > b () a+ c > b+ c

• a > b,c > 0 ) ac > bc.
• a > b,c < 0 ) ac < bc.
• a > 0 () a

�1 > 0
• a > 0 () �a < 0
• a 6= 0 () a

2 > 0
• a > b > 0 () b

�1 > a
�1 > 0

• a > b,c > d ) a+ c > b+d

• a > b > 0,c > d > 0 ) ac > bd.
• If x � 0,y � 0, x � y () x

2 � y
2.

• 1 > 0. (Hint: Consider 1 = 12)
• F cannot have finitely many elements. Hint: consider 1, 1 + 1, 1 + 1 + 1, . . .

Theorem 2.3.2 R, with the definition of positive real numbers R
+ = {x 2 R : x > 0} and

negative real numbers R
� = {x 2 R : x < 0} is an ordered field.

This theorem is very easy to verify by the definition of ordered fields, and I need to remark here
that the of "order" for R is purely a definition, as we always know, such as 1.6 > 1, 3 < 4.2, . . . .

In the mathematics language, the presence of emotion is often made explicit, in fact, the ways
to measure the emotions of mathematical words can be varied and are often defined explicitly
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(depending on the order). This gives rise to the definition of norm, which is the measurement of
emotions for each word. Below is rather an informal definition of a norm on R, a formal one will be
given once one understands "conversation".

Definition 2.3.3 A norm on math words R is an assignment of emotion value in R for each word
x 2 R, denoted |x| such that it satisfies the following three properties:

• The emotion value of the word 0 is 0, i.e., |0|= 0. Also, the only word with emotion value
of 0 is 0, i.e. |x|= 0 ) x = 0 is True.

• The emotion value of a word produced by multiplication is the multiplication of the
emotional values, i.e. |ab|= |a||b| for all a,b 2 R.

• The emotion value of a word produced by addition is less than or equal to the addition of
the emotional values, i.e. |a+b| |a|+ |b| for all a,b 2 R.

R The second and third property of a norm can be understood in the following way: when
multiplying two words, the emotions do not have a "cancel-out" effect but when adding two
words together, the result word might have less emotion value than the emotional value of two
words added together, which is a cancel-out effect.

⌅ Example 2.7 — Norms. ⌅

• The first, and the simplest norm is the following one, where:

|x|=
(

0 if x = 0,
1 otherwise.

This is indeed a norm, which is not hard to verify.
With the definition of order, The most important norm for R is the Euclidean norm, which can

be defined in the following way with the use of > and <. For all x 2 R,

|x|=
(

x if x � 0,
�x otherwise.

It is simple to verify that the Euclidean norm satisfies the first property of norm, and in fact the proof
of the second and the third property is not as straightforward. It is rather straight forward to see that
the definition of Euclidean norm is in fact the definition of absolute value. From example 2.6, we
can then verify the second property. We will prove the third property in the following Theorem.

Theorem 2.3.3 — Euclidean Norm. The Euclidean Norm satisfies three properties of norm.

Proof. The first property is very direct from the definition of Euclidean Norm, and will be omitted
here as an exercise.
The proof of the second property is provided in example 2.6 via proof by cases.
While the third property can also be proved using proof by cases, we will rather prove it in a simpler
way. By the property of Euclidean norm, we know that |x|2 = x

2 for all x 2R. Thus, for any a,b 2R,
|a+b|2 = (a+b)2 = a

2 +2ab+b
2. Also, we have:

(|a|+ |b|)2 = |a|2 +2|a||b|+ |b|2 = a
2 +2|a||b|+b

2.
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Next, it is easy to verify based on the definition of Euclidean norm that |a||b|� ab (can use proof by
cases, left as an exercise). We then know that, by properties of inequalities:

(|a|+ |b|)2 = a
2 +2|a||b|+b

2 � a
2 +2ab+b

2 = (|a+b|)2.

Next, since |a|+ |b|� 0, |a+b|� 0, we can conclude that |a|+ |b|� |a+b|, which is the statement
we would like to prove. ⇤

R In fact, the notion of "Euclidean norm" (i.e. "absolute value") can be defined for all ordered
fields. This is the emotional measurement that we use for our words R, representing the
"emotions" of R.

With the definition of Euclidean norm, we have actually another more intuitive way to define
types of emotions, such as positive and negative emotions for R.

Definition 2.3.4 We call positive real numbers, denoted R
+ to be the set of nonzero real

numbers (words) with emotion value equal to their own value under Euclidean norm, i.e. {x 2
R\{0} : |x|= x}, and negative real numbers denoted R

� to be the set of nonzero real numbers
(words) with own value being the additive inverse of emotion value under Euclidean norm, i.e.
{x 2 R\{0} : |x|=�x}.

R We can easily see that based on the definition of Euclidean norm, R+ = {x 2 R : x > 0}
and R

� = {x 2 R : x < 0}. With this definition, we can see that the set N is the set of pos-

itive integers, which intuitively can be seen as the "proper nouns with good (positive) emotions".

There are some other properties of Euclidean norm which can be easily verified with the definition
of ordered fields, or norms. We will end this subsection by listing some of them below (proofs
omitted as exercises):
Proposition 2.3.4 In R with Euclidean norm | · |, we have:

ma 6= 0 () |a|> 0. a
2 = |a|2. |a|= |�a|. |a�1|= |a|�1.

2.4 Well-ordering and Mathematical Induction

In previous subsections, we have described various categories of nouns, and with the help of emotions
and the notion of "norm" as the measurement of emotions, we gain intuitive understanding of some
more categories of nouns. In the end of this chapter, we will focus on N, since there are very
important properties of N and also since it gives rise to another important proof technique called
mathematical induction.
The other reason for studying N is that natural numbers appear naturally in our daily lives as
"counting", and appears naturally in mathematical language as "sequences" and "series", which we
will study later on.
Let us first begin by talking about some elementary properties of the natural numbers:
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Theorem 2.4.1 Properties of N:
• For all m,n 2 N, m < n () n�m 2 N.
• For all n 2 N, there are no natural numbers m such that n < m < n+1.

Proof. We will prove these properties one by one.
• Consider any m,n 2 N. We know by definition that m,n 2 Z. Hence, since Z is a group under

addition, n�m 2 Z. Since m < n, n�m > 0, thus by definition, n�m 2 N.
• Suppose by contradiction that there exists m 2 N such that for some n 2 N, n < m < n+ 1.

Then, we know that 0 < m < 1 by properties of inequalities, however there are no integers
between 0 and 1 by definition, hence no natural numbers, which gives us a contradiction. ⇤

We will prove other stronger properties of N by first develop a very important proof technique
specifically used for N called proof by mathematical induction. Before we go into details about
this proof technique, we first need to understand what "induction" means. We will begin by defining
inductive subsets of R.

Definition 2.4.1 An inductive subset S ⇢ R is a set satisfying the property that:
• 1 2 S.
• x 2 S ) x+1 2 S is True for all x 2 R.

Theorem 2.4.2 N is the smallet inductive subset of R, i.e. for all inductive subsets S ⇢ R, N⇢ S.

Proof. Let S be any inductive subset of R. Then, we know that 1 2 S, and x 2 S ) x+1 2 S is True
for all x 2 R. Since 1 2 S, we know that 2 2 S, then 3 2 S, and thus all additive multiples of 1 is in S.
Since all additive multiples of 1 are positive integers, by definition of N, we know that N⇢ S. ⇤

From above, we not only know that N is inductive, but also N is the smallest subset that is in-
ductive. With this property of N, we can actually mimick the definition of inductive subsets to
develop a way to prove properties of N.

Definition 2.4.2 A proof by mathematical induction is a proof technique specifically used to
prove properties of N. The proof first defines a statement P(n) that we would like to prove for all
n 2 N, then show P(1) is true, and the statement "P(n)) P(n+1)" is True for all n 2 N.

The above definition being a valid proof technique can be shown by the inductive property of N. Let
T = {n 2 N : P(n) is True.}. Then by definition of T , we know that T ⇢ N.
Then, if we have successfully done a proof by mathematical induction, we know that 1 2 T , x 2 T )
x+1 2 T is True for all x 2 N. Since for all x 2 R\N,x /2 T , thus the statement x 2 T ) x+1 2 T

is True. Hence, by definition, T is inductive, and thus N⇢ T , hence we know that T = N, i.e. P(n)
is True for all n 2 N.

R The proof by induction structure sometimes can be used to prove properties for some other
sets as well, for example to prove something for all even numbers, we can start by proving
P(0), and then show P(n)) P(n+2) is True for all n even. To prove something for all odd
numbers, we can start by proving P(1) and then show P(n)) P(n+2) is True for all n odd.
We can also prove statements for Z by proving P(0), then show P(n)) P(n+1) is True for
all n 2 Z,n � 0 and show P(n)) P(�n) is True for all n 2 Z,n � 0.
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⌅ Example 2.8 — Mathematical Induction. ⌅

Prove that for all n 2 N,
n

Â
i=1

i =
n(n+1)

2
.

Proof. It is very straight-forward for us to notice that the statement we are trying to prove here is

about a property for N. In this case, P(n) corresponds to the statement "
n

Â
i=1

i =
n(n+1)

2
".

Our first step is to show P(1). For n = 1, we know that Â1
i=1 i = 1 = 1(1+1)

2 , thus P(1) is True by
simple calculation.
Our next step is to show that P(n)) P(n+1) is True for all n 2 N, which requires us to assume
P(n) being True and prove P(n+1). Let n be any natural number, and assume P(n) is True. Then,

we know that
n

Â
i=1

i =
n(n+1)

2
.

We also know that
n+1

Â
i=1

i =
n

Â
i=1

i+ n+ 1 =
n(n+1)

2
+ n+ 1 =

(n+2)(n+1)
2

=
(n+1)(n+1+1)

2
.

Thus, we have verified that "P(n)RightarrowP(n+1)" is True. Therefore, by proof of mathematical
induction, P(n) is True for all n 2 N. ⇤

R In the proof above, and in any proof by mathematical induction, we call the assumption that
"P(n) is correct" the inductive hypothesis.

There are a lot of amazing properties about natural numbers, and later on about polynomial
rings (MAT347Y1) that can be proved with mathematical induction. I will try to provide an exer-
cise sheet regarding properties of a very interesting polynomial called binomial, and their coefficients.

With the tool of mathematical induction, we can go on to prove an extremely useful and important
result for N called the well-ordering principle.

Theorem 2.4.3 The well ordering principle states that for every nonempty subset S ⇢ N, S

contains a minimum element, i.e. there exists s 2 S such that for all x 2 S, s  x.

Actually, the well-ordering principle is very intuitive, since the natural number represents proper
nouns with good/positive emotions, for any nonempty subset of proper nouns with good/positive
emotions, we might not have a noun with the best positive emotion, but we definitely have one with
the worst positive emotion, that is the "minimum" in this subset.

Proof. This elegant proof combines both proof by contradiction and proof by mathematical in-
duction. We first suppose we can find an nonempty S ⇢ N such that S does not have a smallest
element.
The beautiful part is where induction comes in. We ask the question "What element is not in S?" Let
P(n) be the statement that for all k 2 N,k  n, k /2 S. Then, we know that P(1) is True since if 1 2 S,
and S ⇢ N, S has a smallest element since 1 is indeed the smallest element of N by definition.
Next, let us suppose P(n) is true for any n 2 N. Then we know that for all k 2 N,k  n, k /2 S. Now,
can n+1 2 S be True? No, because if so, since n+1 is the next natural number after n, and we know
that all natural numbers from 1 up to n are not in S, n+1 would then be the smallest natural number
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in S, which is impossible. Therefore, n+ 1 /2 S, hence for all k 2 N,k  n+ 1, k /2 S, P(n+ 1) is
True.
Hence, by mathematical induction, we know that P(n) is True for all n 2 N, i.e., for all n 2 N,n /2 S.
However, since S ⇢ N, this imples S = /0, which forms the contradiction. Therefore, S has a smallest
element. ⇤

R We can see that the above induction hypothesis is carefully cooked up in the way that in-
stead of assuming for a single n 2 N, we in fact assumed that P(k) is True for all k 2
N,k  n. This technique is a sub-technique of proof by mathematical induction, often
called proof by strong mathematical induction, where we first prove P(1), then prove
that P(1), AND . . . ,AND P(n)) P(n+1) is True. This is a valid proof technique to use since
it is in fact using mathematical induction, with a little cleverness in the inductive hypothesis.
This proof technique is sometimes useful and easier to prove properties of N.

2.5 The Final Axiom

In this chapter, we aim to fully study the basics of the words R. From Chapter 1, we know that R
is defined to be a field with addition and multiplication. In this chapter, we also know that R is
defined to be an ordered field. In fact, to make it easier to talk about and understand conversations,
we need to define another intuitive property of emotions called completeness.
To make it simple, completeness simply means that for every set of words from R that is "emotionally
bounded", their emotions approaches both upwards and downwards to some emotion values that
are unique. This is just very intuitive, since we can just "order" the words and "figure out" the
approaching emotional value. However, this cannot be formulated as a Theorem, because all previous
definitions and properties of R do not deal with the idea of "approaching", hence it is impossible to
prove this idea (Feel free to try it out, but you will get into trouble talking about "approaching").

First of all, let us make clear of the concept of "approaching" by defining "emotional bounds"
for any ordered field F.

Definition 2.5.1 For any ordered field F, A set S ⇢ F is called bounded (above) if there exists an
a 2 F such that for all s 2 S, s  a. Bounded below is defined similarly. In this case, a is called
an upper bound of S. Lower bound can be defined similarly as well.

⌅ Example 2.9 — Bounds. ⌅

Let the ordered field be R.
• Let S = {1,2,3} ⇢ R. It is very easy to see that 3,3.1,4,50 are all upper bounds of S,

0,0.2,�5,1 are all lower bounds of S. This tells us that upper and lower bounds are far from
being unique.

• Let S = R ⇢ R. We can actually see that S is not bounded above or below. This can be
proved using proof by contradiction. If S is bounded above by some upper bound x, then since
x 2 R, x+1 2 R, which means that x is not an upper bound of S, which gives us the desired
contradiction. Lower bounds can be proved similarly. Hence, not all subsets of R have upper
bounds or lower bounds.
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Definition 2.5.2 An ordered field F is called complete if every non-empty bounded above S ⇢ F

has a least upper bound x 2 F, which means for all upper bounds x
0 2 F of S, x

0 � x. x is denoted
as sup(S).

Theorem 2.5.1 R is complete.

This is purely another definition, and we assume without proof that this is True.

R It is actually equivalent to denote the completeness definition for R (or for any ordered F) to
be every non-empty bounded below S ⇢ R has a greatest lower bound x 2 R, which means
for all lower bounds x

0 2 R, x
0  x. x is denoted as inf(S). The equivalence can be seen by

forming S
0 = {x : �x 2 S} for any bounded above nonempty S ⇢ R.

Now, we have defined and everything we need to understand our words R. However, I do want
to remind you of a major problem: we took the definition of the set R for granted!!! We simply
never defined what R is, just made a couple of property definitions (axioms) without proof, and
defined Z, Q, and N using R. In fact, there is the beautiful definition for R which summarizes our
Math Language 101: Learning the words. After this, we can go on the journey to explore and have
interesting conversations.

Definition 2.5.3 We define R, the real numbers to be the unique ordered and complete field,
i.e. the unique set satisfying Theorem 1.2.1, Theorem 2.3.2, and Theorem 2.5.1.



3. Conversations with R

In previous two chapters, we learned about the alphabet and words used in mathematical language,
which is R. Now we are ready to have conversations with these words. Since math words R is
closed under the operations addition and multiplication, although alphabets generate words and
words generate sentences, they mean the same in math.
In this chapter, we will mainly be talking about 1 input 1 response conversations, meaning that for
every spoken input, there will be only one response. With this idea, we can start to analyze lots of
interesting conversations, their emotions and information presented in these conversations.

3.1 Functions

3.1.1 The Basics

Let us start by defining general conversation between two person using two alphabets (which are sets).
Let us keep in mind that when we are dealing with specific mathematical structures that are closed
under some operation, alphabets have the same meaning as words and sentences.

Definition 3.1.1 A function f between sets X and Y (conversation between two person using
two alphabets) is a communication log that corresponds each x 2 X with an element y 2 Y . We
say that "x maps to y by f", and we often denote f : X ! Y , x 7! y and y = f (x). One calls y the
image of x and x the preimage of y. We call X the domain of f and Y the codomain of f . We
call f (X) = { f (x) : x 2 X} to be the image of f .

⌅ Example 3.1 — Functions. ⌅

• In the set X = {1,2,3}= Y , we can have a function f : X ! Y such that f (1) = 2, f (2) = 3
and f (3) = 1. We can also have a function g : X ! Y such that g(1) = g(2) = g(3) = 1.
However, if we associate 1 2 X to both 2 2 Y and 3 2 Y , then we will not get a function. An
important thing to note here is that for every x 2 X and any function f : X !Y , f (x) is unique.

• When X = Y = R, we can get a lot of familiar functions, such as f : R! R with f (x) = x
2

for all x 2 R. We can see that 1 7! 1, 2 7! 4 and �3 7! 9. We can see that the image of f is
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R
+[{0}. Another example can be g : R! R where g(x) = sin(x) for all x 2 R. In this case,

0 7! 0, p
2 7! 1 and 3p

2 7! �1. In this case, the image of g is [�1,1].
• When X =N, Y =R, and if we have any function f : X !Y , then we call the set of images of

f , namely { f (1), f (2), . . .} a (real) sequence. As an example, if we have f : N! R such that
f (x) = x+2, then f (1) = 3, f (2) = 4, f (3) = 5, . . . is a sequence.

• In previous sections, we haven’t defined the notion of "norm" rigorously. In fact, a norm N on
R is a function N : R! R such that x 7! |x| and satisfying the norm defining properties.

R A very important thing to notice is that in the definition of functions, the person with alphabet
X uses all letters in the alphabet, while the person with alphabet Y does not necessarily use up
all letters in Y , i.e. every x 2 X is mapped by f to some y 2 Y , but not every y 2 Y is mapped
from some x 2 X .

From above remark and the definition of functions, we understand that not necessarily all letters in Y

are mapped from some letter in X ( f (X) may not be equal to Y ) and not necessarily each letter in X

is mapped differently to some letter in Y . Functions with these type of properties are more desirable
and very useful for analysis, so we would like to give them specific terminologies.

Definition 3.1.2 We say a function f : X ! Y is injective if for all x,x0 2 X , f (x) 6= f (x0). We
say a function f : X ! Y is surjective if for all y 2 Y , there exists x 2 X such that x 7! y, i.e.
f (X) = Y . We say f is bijective if it is both injective and surjective.

⌅ Example 3.2 — Injectivity, Surjectivity and Bijectivity. ⌅

• Same as in example 3.1.1, if X = {1,2,3} = Y , f defined in 3.1.1 is both injective and
surjective, hence bijective. However, the g defined in 3.1.1 is not injective nor surjective. For
any set X = Y = {1,2,3, . . . ,n}⇢ N, the set of bijective functions f : X ! Y is called the set
of permutations on X , since each function is essentially "permuting" the elements 1,2, . . . ,n.

• We call a function f : R!R such that f (x) = a0+a1x+ . . .+anx
n for all x 2R where ai 2R

for all i and n 2 N a (real) polynomial of degree n. An example would be f (x) = x
2, this is a

real polynomial of degree 2, we can see that in this case f is not surjective or injective, since
f (1) = f (�1) and f (x)� 0 for all x 2 R. However, one can show that f (x) = x

3 is bijective.
(Hint: Showing it is surjective is simple, since we can solve x

3 = a for all a 2 R. To show it is
injective, consider x

3 � y
3 = 0 and factor.)

It is a common scenario for us to consider only the conversation involving 1 person saying specific

"words" and the other person’s responses. This natural language intuition gives rise to the "restriction"
of a function.

Definition 3.1.3 Given f : X ! Y , and A ⇢ X , we define the restriction of f to A to be the
function f |A : A ! Y such that f |A(a) = f (a) for all a 2 A. It is easy to see that since f is a
function, f |A is also a function.

R f |A can be seen as the conversation log for usage of only words in A and their responses.

⌅ Example 3.3 — Function Restriction. ⌅

• Sometimes non-injective functions can restrict to injective ones. As an example, f (x) = x
2 on

R restricts to an injective function f |R+ : R+ ! R.
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• By changing the codomain to be the function’s image, we get a surjective function. With same
example as above, we know that f (x) = x

2 is surjective if we consider f : R! R
+[{0}.

3.1.2 Functions with Group Structure

Let us consider two functions f : X ! Y and g : X ! Y between set X and group Y closed under ?.
Then, we can define f ?g such that f ?g : X !Y where x 7! f (x)?g(x). It is easy to see that f ?g is
indeed a function.
Intuitively, this means that if we have two separate conversations between two people using the same
two alphabets, we can consider the response emotion together for each input. This is what we do
all the time, consider everybody’s opinion on the same input we provide. Everybody responding
needs to use the same alphabet otherwise the combination won’t make any sense. In fact, this gives
the group operation for functions from X to Y , since multiplying two such functions still gives us a
function from X to Y , provided that Y has a group structure.
Similarly, if Y is a (ring) field with another operation ·, we can also define f ·g : x 7! f (x) ·g(x), and
� f : x 7! � f (x) and possibly also f

�1 : x 7! f (x)�1. We can see that the set of functions from given
set X to given set Y has the exact same structure that Y has, with the operations defined as above.
What is truly powerful is that the set of bijective functions f : X ! X for any set X with or without
any structure is already a group, equipped with the following multiplication method:

Definition 3.1.4 Given any sets X ,Y,Z, and functions f : X ! Y , g : Y ! Z, we define the
composition of f and g, read as "g compose f " or " f pull back g" to be f

⇤
g : X ! Z such that

x 7! ( f
⇤
g)(x) = g( f (x)).

R The above definition is a bit general, but we can see that for two functions f ,g : X ! X , we
can compose them together using composition defined above. It is important that we keep
the codomain of f and domain of g to be the same for composition to make sense. Hence for
functions from X to X , we assume them to be bijective for composition to make sense. Many
sources use g� f to represent g compose f , however it is applying f first, then g. The backward
order in the terminology here is why I do not like it. I will use f

⇤
g in all later occurrences.

In fact, with above remark we can see that given any set X , the set of functions from X to itself is
closed under composition. It is easy to see that this operation is associative by definition.

Theorem 3.1.1

( f
⇤
g)⇤h = f

⇤(g⇤h)

Proof. On the left hand side, we get x 7! g( f (x)) by f
⇤
g pull back, then g( f (x)) 7! h(g( f (x))) by h.

On the right hand side, we get x 7! h(g(x)) by g
⇤
h, then mapsto h(g( f (x))) by f pullback. They are

equal. ⇤

Then another question before we conclude that given any set X , the set of bijective functions
from X to itself is a group under composition: What is the identity element? In fact, it is easy to see
that f : X ! X such that x 7! x is the identity element under composition (Try it!). This function is
called the identity function, denoted id.
In fact, we also need to define the inverse operation of composition.
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Definition 3.1.5 Given any bijective function f : X ! Y , we define the inverse function of f to
be f

�1 : Y ! X such that f
⇤( f

�1) = id = ( f
�1)

⇤
( f ), i.e. f

�1 : y = f (x) 7! x.

R The reason for this definition requiring f being bijective is that we need every y 2 Y to be the
image of some x 2 X , suggesting that f must be surjective. Besides, in order for f

�1 to be a
function, we need each y 2 Y only has one x 2 X such that f (x) = y, meaning that f must also
be injective.
Another thing is that we use f

�1 both for multiplicative inverse at the beginning of this
chapter and for composition inverse in the above definition. To ressolve ambiguity, we always

use f
�1 for composition inverse, and 1

f
for multiplicative inverse, when Y is a group under

multiplication.

Theorem 3.1.2 Given any set X , the set of bijective functions from X to itself forms a group
under operation composition.

When you have a story, you tell person A, person A retells it to person B. The emotion that person B
gets will be the emotion getting from person A telling person A’s emotion getting from your version
of the story. This is the composition operation! If the response of person A uses all letters in person
A’s alphabet and you have 1-1 correspondance between your input and person A’s response, it is
possible to based on person A’s response to figure out what you said to person A, we usually use this
technique when we are trying to remember what we have said. This is inversion.

⌅ Example 3.4 — Composition and Inversion of Functions. ⌅

• The set of polynomials on R of any finite degree (as defined before) is a ring. Why? First, it is
closed under addition with additive identity being 0 (treated as a 0 degree constant polynomial).
The additive inverse is also defined, being negative of each polynomial. Then, it is closed under
multiplication, since we get a polynomial when two polynomials multiply, the identity for
this operation is the constant polynomial 1. However, it is important to note that polynomials
with addition and function composition is not a ring. This is because not all polynomials are
bijective, i.e. f (x) = x

2.
• Given set X = {1,2,3, . . . ,n}, we know that the set of permutations is a group from Theorem

3.1.2, since all permutations are bijections. In fact, we call this group Sn for each n 2N. It is a
very important group in abstract algebra!

3.1.3 Graphs of Functions

For functions from R to R, we can actually plot them on a piece of paper. This involves the idea
of defining the graph of functions, which also leads to one definition of the information of each
conversation, which will be covered in future chapters. Let us first define abstractly what it means
for the graph of functions.
Before we define the graphs of functions, we will first define a new operation on sets, called the
Cartesian Product.

Definition 3.1.6 Given two sets X ,Y , we define the Cartesian Product of X and Y to be the set
X ⇥Y = {(x,y) : x 2 X ,y 2 Y} which is the set of ordered pairs of elements in X and Y .

R By ordered pairs, we mean that even if X = Y , for a 6= a
0 2 X = Y , (a,a0) and (a0,a) are two

distinct elements in X ⇥Y .
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Definition 3.1.7 Given a function f : X ! Y , we define the graph of f , Graph( f ) : X ! X ⇥Y ,
such that x 7! (x, f (x)). This is actually a function from X to the Cartesian Product of X and Y .
We call the image of this function the graph of f.

The intuition behind "graph" is that it is a conversation logging between two person using alphabets
X and Y , but instead of logging only the 2nd person’s response, we also log the 1st person’s input.
After defining abstractly what a graph of function means, we need to know how to draw the graph.
As a starting point, we will define the notion of a "number line." A number line is a visual represen-
tation of R, where numbers in R are ordered from left to right, as shown below:

Moving from right to left, the number gets smaller. Moving from left to right the number gets bigger.
The red half of the number line above represents negative emotions, while the blue half represents
positive emotions. In order to graph a function f : R ! R, or even a function f : X ! Y where
X ,Y ⇢ R, we first combine two number lines together to make a number plane, like below:

Then, we will label the horizontal axis the x-axis, and the vertical axis y-axis or f (x)-axis. Each
point on the plane can be labelled by (x,y) where x represents its horizontal position and y represents
its vertical position. We call the point (0,0) the origin.
In fact, given any function f : R! R, each element in the graph of f is a point on the number plane.
After we find all the points on the number plane, we connect them together to form the "graph" of
function f .

⌅ Example 3.5 — Graphs of Functions. ⌅
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Above is the graphs of several important functions, some of which we haven’t seen/defined, but we
will in the future. A great tool to use is Desmos, where you can see the graph of all kinds of functions
from R to R. In fact, we can graph all kinds of shapes on the number plane, but is everything
representing a function? Not necessarily, let us see an example.

If this is a function, the point 0.5 has two points being its image, which is impossible. It is not hard
to realize that for every graph of functions, for every x 2 R, if we draw a vertical line through x on
the x-axis, this line can only meet the graph at one point. In fact, this is a way to tell whether a graph
represents a valid function, called the Vertical Line Test.

Let us consider the f (x) = x
2 graph included above, we know that this function is not injective, but

can we tell from the graph? Yes, in fact, if we draw a horizontal line through 2 on the y-axis, we can
see that it meets the graph at 2 points, meaning that two x values are mapped to the same y value,
hence f (x) = x

2 is not injective. We can check every horizontal line from each value on the y-axis
with the graph to see whether a function is injective or not, this is called the Horizontal Line Test.
There are several things you can do to a graph, including translation (y = sin(x)+2, y = sin(x�2)),
stretching (y = sin(3x)), and reflection y = sin(�x), y =�sin(x). See below for the effects of these
operations:

https://www.desmos.com
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3.1.4 Countability

In this subsection, we will describe a very important idea called countability, meaning whether a set
S can be counted with natural numbers. By definition of natural numbers, we know that S can be
finite or infinite, but it should be "as many as" the natural numbers.

Definition 3.1.8 A set S is countable if we can find a surjective function f : N! S, i.e. we have
a way to count every element of S using natural numbers.

R It can be seen from the above definition that we do not require f to be injective, meaning that
we can count S’s elements repetitively.

⌅ Example 3.6 — Countable Sets. ⌅

• Finite sets are countable. Why? Consider any finite set S = {s1, . . . ,sn} for some n 2 N.
Simply take f : N! S such that f (x) = sx if 1  x  n, and f (x) = s1 otherwise. It is easy to
see that f is surjective.

• N is countable. [Left as an exercise.]
• Z is countable. Why? Let us define f : N!Z such that f (x) =� x�1

2 if x is odd, and f (x) = x

2
if x is even. It can be shown that this function is surjective. This actually shows that on the set
level, a set that is bigger than N may still be countable.

• Given a countable set S, every A ⇢ S is countable. [By definition, left as an exercise.]
We do have some important results with regards to countability of sets, one of which is that
countability holds with N-unions.

Theorem 3.1.3 If {Si}i2N are a collection of countable sets, S =
S•

i=1 Si is also countable.

Proof. This proof is a very clever trick to count the elements in the union. We can observe that
each element a 2 S can be characterized uniquely by (i,x) where i represents which Si that a is in,
and x represents the natural number we give a 2 Si since Si is countable. Given this a 2 S and (i,x)
representing a, we consider m = i+ x, and we define the function f : N! S such that

f (
(m�1)(m�2)

2
+ i) = a

for all a2 S, m2N. Basically we are counting elements in S in the following order: s11,s12,s21,s13,s22,s31, . . .,
where s11 is the first element we count in S1 and so on.
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Since each a 2 S gets a unique (i,x) pair, and each pair corresponds to a unique (m�1)(m�2)
2 + i value,

we know that f is surjective. Hence, S is countable. ⇤

R In fact, we can try to do the above proof using mathematical induction, but even if we show
that Sn =

S
n

i=1 Si is countable for all n 2 N, it is still different (requires more theory) to show
that S is countable since S is an infinite union of sets.

Above proof for the theorem also can be used to prove another important theorem, whose proof will
left as an exercise:

Theorem 3.1.4 The rational numbers Q is countable.

Next, what about R? In fact, R is not countable. Let us see why.

Theorem 3.1.5 R is not countable.

Proof. Suppose by contradiction that R is countable. Then, we can define a function f : N! R

such that f is surjective. Since f is surjective, we can actually define an injective inverse function
f
�1 : R! N, mapping each number in R to their counting order, and in fact f

�1(R)⇢ N.
Let us consider the numbers 0.2111111 . . . ,0.22111111 . . . ,0.22211111 . . . ,0.222211111 . . . , · · ·
Each of the numbers are different since they has different number of 2’s. Let S be the set of
these numbers. We know that they all have different counting orders. Also, we can define g : S ! N

such that g(s) ="number of 2’s in s.", and in fact g is a bijection onto N.
Since we can find a bijective mapping from S to N, it is not possible that f

�1(S) 6= N since
we already know f

�1 is injective on all of R. Why is this? Consider any h : N ! N such that
h(n) = f

�1(g�1(n)). Then, if h is not onto, we know that there are n1,n2 2N such that h(n1) = h(n2),
however g

�1(n1) 6= g
�1(n2), thus by definition of h, f

�1 cannot be injective. Therefore, h must be
onto N. It is easy to see that g

⇤
h = f

�1|S by definition of h, thus f
�1 is bijective.

This means f
�1(S) = N, then S must be equal to R, by definition of f

�1. However, simply consider
the number 0.3, which is different from all numbers in S but is still a real number in R. Thus, S 6= R,
hence we reached a contradiction. R is uncountable. ⇤

3.2 Limits

In the last subsection, we understand what is a conversation with R (functions) and different types
of functions, understands the operations on these conversations and how to log them (graphs of
functions). In the end, we talked about the concept of countability defined using functions.
In this subsection, we will try do make sense of the idea that "where the conversation is going". In
fact, this is the idea similar to what we have for defining sup and inf for R: the idea of "approaching".
We will give more concrete definitions of this using limits.

3.2.1 Limit Definition and Metric

Definition 3.2.1 Given a function f : A ! R, A ⇢ R, and given a 2 R we write lim
x!a

f (x) = l

(called as x goes to a, f (x) approaches l or the limit of f as x goes to a is l) if for all e > 0, we
can find a d > 0 such that for all x 2 A, ”0 < |x�a|< d ) | f (x)� l|< e” is True. We say the
limit of f as x goes to a exists if we can find such an l 2 R, if not, we say that the limit does not
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exist (DNE).

R The formulation of above definition suggests that depending on what we choose for e , d can
change dependently. However, for every value of e , finding at least one d that works in the
definition is required.

It is in fact the most complicated definition so far, because it involves a lot of logical statements and
math symbols. I will try to explain the intuition behind the definition of limits.
As we mentioned above, we would like to know "where the conversation was going", in fact "If I am
going to say something with emotion a, what would the other person’s response emotion look like?".
It would be a successful and accurate prediction of the other person’s response emotion l if I am
able to say something close to a that can trigger this person’s response to be as close as possible to l.
This is exactly the logic behind predicting the emotional flow of the conversation. That’s why the
limit definition precisely reflects the idea that, if: no matter how close (any e > 0) I would want, I
can say something close to what I am predicting that I would say (|x�a|< d ), and making the other
person’s response emotion f (x), e-close to my prediction l. Then: this prediction l must be where
this conversation is going (emotion-wise) if I’m going to say a word with emotion a.
With the above intuition, it actually subtly presents the idea that we need to have a sense of "closeness"
between two words with some emotion values. In fact, having the idea of closeness of emotions
between words is much more important than the idea of "what the emotion of a single word is",
and the idea of "approaching" is very fundamental in calculus and analysis. In many real analysis
sources, authors define closeness (emotional distance) at the start, and define norms based on the
idea of closeness. I will do the other way around, and I believe this way is more intuitive with our
natural language analogy.

Definition 3.2.2 We can define a map d : R⇥R! R such that d(x,y) = |x� y| where | · | is a
norm defined on R. We call the map d a metric on R.

⌅ Example 3.7 — Metrics. ⌅

• In example 2.7, we described several examples for norms. The first one gives rise to discrete

metric, which is defined as:

d(x,y) =

(
0 if x = y

1 otherwise.

• The second example is the Euclidean Norm. With the definition of Euclidean norm, we can
define Euclidean metric, which is defined as:

d(x,y) = |x� y|.

Intuitively, as soon as we have a metric, we have a sense of emotional closeness.

R Without specification, we always assume the metric we are working with is the Euclidean
metric.

The idea of changing closeness with response value (e) resulted by changing closeness of input (d )
is present in various proofs involving limits. We will begin by some interesting results that can be
proved directly from limit definition.
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Theorem 3.2.1 Given the function f : R!R such that f (x) = ax+b, where a,b 2R. Given any
y 2 R, lim

x!y

f (x) = f (y) = ay+b.

Proof. By the definition of limits, we first let e > 0 be given. We would like to show that we can
achieve this e-distance between f (x) and f (y) by choosing a d -distance between x and y. The
remaining work is about finding this d . But how?
Let us suppose that we have already found a d , then for any |x� y|< d , | f (x)� f (y)|= |ax+b�
ay+b|= |a||x� y|< |a|d . In order to make sure that | f (x)� f (y)|< e , we get the inequality that
|a|d  e , d  e

|a| . This shows that any d less than or equal to e
|a| works, then we need to specify a

single value of d , for example e
|a| . Then we are done. ⇤

R The above proof is more of a thought process than a proof. A proof will go in the opposite
direction as the above proof, namely starting by defining d = e

|a| and in the end show that
| f (x)� f (y)|< e for this particular e .

Sometimes more modifications on these inequalities before choosing a d is required, for example in
the below exercise:

Exercise: Show that lim
x!y

x
2 = y

2. ⌅

Hint: We need |x2 � y
2|= |x� y||x+ y|< e , |x� y| needs to be smaller than d . The problem is with

|x+ y|, consider triangle inequality |x+ y|= |x� y+2y|, and then solve for d .

3.2.2 Limit Properties

Theorem 3.2.2 Suppose f : A ! R, A ⇢ R, and lim
x!a

f (x) exists for some a 2 R. Then, we know
that the limit is unique.

Proof. We will prove by contradiction. Suppose lim
x!a

f (x) = l1 and lim
x!a

f (x) = l2, where l1 6= l2.
Then, we know that given any e > 0, we can find d1,d2 > 0 such that for all x 2 A, |x� a| <
d1, | f (x)� l1| < e , and for all x 2 A, |x� a| < d2, | f (x)� l2| < e . Let d = min{d1,d2}, then we
know that for all x 2 A,x < d , both conditions satisfy. Hence, | f (x)� l1| = |l1 � f (x)| < e and
| f (x)� l2|< e . Thus by triangle inequality:

|l1 � f (x)+ f (x)� l2|= |l1 � l2| |l1 � f (x)|+ | f (x)� l2|< 2e.

Therefore, we have shown that |l1 � l2| < 2e for any e > 0, which means l1 = l2, and we get a
contradiction. ⇤

The intuition for above proof is very straightfoward, we are basically saying if we have two correct
predictions l1, l2 of the response when I say y in a conversation, they must be the same. Why?
Because I can say something x that is very close to input y to make the response as close to l1 as I
want, and similarly, I can also say something x

0 that make the response as close to l2 as I want.
Therefore, I can say something that makes l1 and l2 as close to each other as I want, meaning that
they must be the same prediction.
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In fact, just like response emotions add, subtract (add by inverse), multiply and divide (multiply by
inverse), the predictions of response emotions should also add, subtract, multiply and divide. This
result is summarized below:

Theorem 3.2.3 Properties of Limits: Given functions f ,g : A ! R for some A ⇢ R:
1. lim

x!a

( f ±g)(x) = lim
x!a

f (x)± lim
x!a

g(x).
2. lim

x!a

( f g)(x) = lim
x!a

f (x) · lim
x!a

g(x)

3. If we can find a m such that for all |x� a| < q, g(x) 6= 0, then we know that lim
x!a

f

g
(x) =

lim
x!a

f (x)/ lim
x!a

g(x).

Proof. For property 1., the proof is extremely similar to the proof used for Theorem 3.2.2, so is left
as an exercise.
To make it simpler for property 2 and 3, we suppose lim

x!a

f (x) = l, lim
x!a

g(x) = m. Let e > 0 be given.
For property 2, our ultimate goal is to make | f (x)g(x)� lm|< e for |x�a|< d for some d . What
we know is that we can make | f (x)� l|, |g(x)�m| as close as possible. We can observe that:

| f (x)g(x)� lm|= |( f (x)� l)(g(x)�m)+m f (x)+ lg(x)�2ml|
= |( f (x)� l)(g(x)�m)+m( f (x)� l)+ l(g(x)�m)|
 | f (x)� l||g(x)�m|+ |m|| f (x)� l|+ |l||g(x)�m|
< e

(3.1)

It is great that we get | f (x)� l|, |g(x)�m| to appear in each term of addition. Thus, the most straight
forward thing to do is to make sure | f (x)� l||g(x)�m|< e

3 , |m|| f (x)� l|< e
3 and |l||g(x)�m|< e

3 .
Furthermore, to make | f (x)� l||g(x)�m|< e

3 , we can make | f (x)� l|<
p

ep
3

and |g(x)�m|<
p

ep
3
.

We know that we can do these things, it is left to make it formal.
Suppose |x�a|< d1 makes | f (x)� l|<

p
ep
3
, |x�a|< d2 makes |g(x)�m|<

p
ep
3
, |x�a|< d3 makes

| f (x)� l|< e
3|m| , and |x�a|< d4 makes |g(x)�m|< e

3|l| . Finally, we set our d = min{d1,d2,d3,d4}
and we are done.
For property 3., our ultimate goal is to prove that lim

x!a

f

g
(x) = lim

x!a

f (x)/ lim
x!a

g(x), however with

property 2. already proved, we only need to show that lim
x!a

1
g
(x) =

1
limx!a g(x)

. Hence, we need that

| 1
g(x) �

1
m
|< e , thus we know:

| 1
g(x)

� 1
m
|= |m�g(x)

g(x)m
|

=
|g(x)�m|
|g(x)| · |m|

= |g(x)�m| · 1
(|g(x)| · |m|) .

(3.2)

Let us first bound |g(x)| by |m| using the triangle inequality that |m|� |g(x)| |g(x)�m|. Choose
d1 > 0 such that for all 0 < |x� a| < d1, we have |g(x)�m| < |m|

2 , thus |g(x)| > |m|
2 . Hence, we

know that 1
|g(x)|·|m| 

2
|m2| . Pick d2 > 0 such that for all 0 < |x� a| < d2, we have |g(x)�m| <
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min{ |m2|e
2 , |m|

2 }, in this case, we know that:

|g(x)�m| · 1
(|g(x)| · |m|) <

|m2|e
2

· 2
|m2| = e. (3.3)

Then, we can let d = min{d1,d2,q} since we can’t have g(x) to be 0 anywhere, and then we have
proved the claim. ⇤

Theorem 3.2.4 Let f : A ! R and g : B ! R with A,B ⇢ R and f (A) ⇢ B. Suppose we have
lim
x!a

f (x) = l and lim
y!l

g(y) = g(l), then we have lim
x!a

g( f (x)) = g(l).

Proof. Let e > 0 be given. Then we know that we can find d1 such that |y� l| < d1, we have
|g(y)�g(l)|< e . Next, we also know that we can find d such that 0 < |x�a|< d , | f (x)� l|< d1,
and in this case we know |g( f (x))�g(l)|< e . ⇤

The above theorem and proof follow from our natural language analogy. The theorem is deal-
ing with the conversation that invovles "retelling", meaning I tell you, you retell person A. The
theorem suggests that if I can predict that your response is l if I say a, and you can predict that
person A’s response is g(l) when you say l, then we know that we can predict when I say a, person
A’s response is g(l), which is very intuitive.
The way we try to prove this theorem, we use the idea that since you can predict person A’s response
g(l), you can say something close to l and prompt person A to say something as close to g(l) as we
want. Then, base on how close you need to be to l, I can say something close to a to achieve this,
since I can predict that your response is l if I say a, which is also very intuitive.

3.2.3 Limits DNE, one-sided limits and limits of infinity

In the above paragraphs, we have showed several examples of limits and proved properties of limits.
There are also scenarios where the limit does not exist, meaning that we cannot find a prediction of
where the response emotions are going. With mathematics symbols, it means that for every l, we
can find an e such that no d works as in the limit definition, i.e. 8l 2 R.9e > 0.8d > 0.9x 2 A : 0 <
|x�a|< d AND | f (x)� l|� e . Let us consider some examples.

⌅ Example 3.8 ⌅

Let us consider the function f : R\{0}!R such that f (x) = sin(1
x
). Our claim is lim

x!0
f (x) does

not exist.
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With the above graph of f , we can already see the problem. The response emotions oscillates too
fast close to 0, making it impossible to predict. We are going to rigorously illustrate this idea.
Firstly, we know that sin(1

x
) = 1 if 1

x
= p

2 + 2pk = p+4pk

2 for some k 2 Z, and sin(1
x
) = �1 if

1
x
= 3p

2 +2pk = 3p+4pk

2 for some k 2 Z. Let l 2 R be given. Let e = 1. We will consider two cases.
Firstly, l > 0. Pick any d 2 R

+, and choose k large enough so that 0 < 2
3p+4pk

< d , then we know
that if x = 2

3p+4pk
, sin(1

x
) =�1. In this case, | f (x)� l|= |�1� l|= |l +1|> 1 = e .

If l < 0, for any d 2 R
+, we can choose k large enough so that 0 < 2

p+4pk
< d , then we know that if

x = 2
p+4pk

, sin(1
x
) = 1. In this case, | f (x)� l|= |1� l|=> 1 = e . Thus, we know that there is no d

that works for e = 1, and the limit does not exist.
What we did above is simply use the notion of "closeness" and the fact that sin(1

x
)’s response emotion

oscillates very fast between 1 and �1 near 0 to show that the limit does not exist.

The definition of the limit and the definition of emotional closeness suggests that as long as I
am close enough to a, no matter whether my input emotion is more negative/positive than a, I can
prompt you to respond something close to l. However, there exists situations where whether my
emotion is more negative/positive than a directly effects your response, and you respond differently
depending on whether my emotion is more negative/positive than a. In this case, your emotional
response when I say a is also not predictable since on each side I am having a different prediction.
This motivates the concept of one-sided limits.

Definition 3.2.3 Given function f : A ! R where A ⇢ R and a 2 R, we write lim
x!a+

f (x) = l

if 8e > 0.9d > 0.8x 2 A : x� a < d ) | f (x)� l| < e . lim
x!a�

f (x) = l is defined similarly by
replacing x�a by a� x.

⌅ Example 3.9 Let us consider the function f : R\{0}! R such that f (x) = x

|x| , then we know
that f (x) on R

+ is constant 1 and f (x) on R
� is constant �1. In this case, we can easily show that

lim
x!0+

= 1, and lim
x!0�

= �1. However, limx!0 f (x) does not exist, since the function reaches two

"different limits". We can show this by analyzing different cases of l. If l  �1 or l � 1, we can
let e = 1 then we know that no matter what d we choose, there is one side of f that has distance
greater than 1 from l. If �1 < l < 1, pick e = min{|1�l|,|l+1|}

2 , i.e. half of the shorter distance between
1 and l and �1 and l, it is not possible to reach closer than e for any d . (Try drawing it out for better
understanding).
⌅
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From above example, we can actually summarize to another important result, which is the follow-
ing:

Theorem 3.2.5 Given f : A!R where A⇢R, given a2R, lim
x!a

f (x) exists if and only if lim
x!a+

f (x)

and lim
x!a�

f (x) both exists and are equal.

Proof. The proof of this theorem follows the same logic as Example 3.9, hence will be left as an
exercise.

3.3 Sequences

3.4 Continuity

3.5 Differentiability
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